23.11.2022

Oczy dobrze ubrane. O najnowszych modowych trendach w optyce okularowej rozmawiamy z właścicielem salonu optycznego Studio Optyk, Jarosławem Bugajem

Współcześnie okulary są wytworem łączącym w sobie tak różne dziedziny wiedzy i aktywności ludzkiej jak inżynieria materiałowa, zaawansowane technologie cyfrowe, okulistyka i wiedza optyczna, precyzyjne rzemiosło, wzornictwo przemysłowe i design, a nawet marketing marek luksusowych. I w takim ujęciu doskonale wpisują się w translacyjny charakter centrum badań nad okiem, jakim jest ICTER. Dlatego dziś chcielibyśmy Państwu przybliżyć temat okularów i mody na okulary z perspektywy osoby, dla której ich produkcja, indywidulany dobór oraz naprawa są osobistą pasją i zawodowym wyzwaniem.

Czy prawdą jest, że każdy z nas w ciągu życia będzie potrzebować przynajmniej pary okularów?

– Tak, to prawda. To jest nieuniknione. Prędzej czy później, nawet jeśli nie mieliśmy do czynienia z okularami, to w którymś momencie naszego życia zaczyna się młoda prezbiopia, czyli utrata elastyczności soczewki wewnątrzgałkowej. Nagle okazuje się, że ręka jest już za krótka, by zapewnić odległość właściwą do odczytywania drobnego druku. Wtedy przychodzi czas na wizytę u okulisty, pomiar refrakcji, no i sprawdzanie, jak bardzo naturalna soczewka przestaje być wydolna.

– Czyli poprawiamy sobie korekcję dobierając soczewki. Ale przecież zależy nam, by ładnie i modnie wyglądać, niezależnie od płci i wieku.

– Tak, i wtedy, oprócz doboru soczewek, czeka nas wybór oprawy okularowej, co nie jest takie proste, jakby się nam wydawało. Trzeba zwracać uwagę na mnóstwo czynników, a przede wszystkim trzeba się sobie podobać i dobrze czuć w takiej oprawie. Często też zależy nam, by dostosować ją do obecnych trendów. Kiedyś do okularów nie przykładano takiej wagi, traktowane były jako zło konieczne, muszę je nosić, bo bez okularów nie widzę lub słabo widzę. Dziś zależy nam również na tym, by w nich dobrze wyglądać i mieć coś fajnego na twarzy, liczy się też komfort użytkowania i jakość wykonania. Można powiedzieć, że w optyce okularowej występują takie fale np. że była moda na oprawy drucikowe, później przyszła moda na oprawy z masy (plastik), wyraziste, a ostatnio transparentne, a teraz to się już troszeczkę pomieszało. Do tego każdy z nas ma indywidulane preferencje. Są osoby, które wolą mocne oprawy, które są wyraźnie zauważalne na twarzy i będą zaznaczały ich charakter, a są osoby, które wolą oprawy delikatniejsze, bardziej subtelne. Ważne, by było stylowo, komfortowo, aby pacjent dobrze się czuł w tych okularach, bo jakby nie było, jest to proteza naszego wzroku.

– Kto wyznacza trendy w modzie na oprawki?

Obecnie są to przede wszystkim główne domy mody, które za pośrednictwem swoich największych, często ekskluzywnych i najbardziej rozpoznawalnych marek kreują trendy w modzie dla pań i panów. W niemal każdej kolekcji sezonowej, okulary – głównie te przeciwsłoneczne, ale również oprawy korekcyjne – są integralnym elementem projektów prezentowanych na wybiegu.  Trendy obecnie wyznaczają też celebryci oraz influencerzy. Osoby znane często pokazują się w okularach, zwłaszcza przeciwsłonecznych, noszą coraz ciekawsze modele, także te z wybiegów mody, wzbudzając tym zainteresowanie przynajmniej części społeczeństwa. Często zdarzają się nam pacjenci, którzy proszą o oprawy jakie nosi konkretny celebryta. To jest ciekawe o tyle, że na każdą twarz przypada trochę inna oprawa. Ta, w której Pan Krzysztof wygląda elegancko i szykownie, niekoniecznie zadowoli Pana Karola, który dodatkowo może nie odczuć w ogóle komfortu noszenia takich oprawek. Na to też trzeba zwrócić szczególną uwagę przy doborze okularów.

– Czyli modę okularową kształtuje głównie dyktat domów mody. Ale są też inne trendy, które mogą wpływać na to, jak się nosimy i co nosimy na co dzień. Silnym trendem obecnie jest wszystko, co związane jest z ekologią i zrównoważonym rozwojem. Jak wygląda ten trend w oprawkach?

– Coraz więcej producentów wykorzystuje do produkcji opraw surowce wtórne. Współpracujemy z firmą, która wytwarza oprawy z surowców pozyskanych z recyclingu śmieci oceanicznych. W oprawach pojawia się coraz więcej domieszek drewna i innych materiałów naturalnych, które na początku były słabo wykorzystywane z uwagi na swoją kruchość i łamliwość. Obecnie wzbogacane są o specjalne płytki akcelatowe, które sprawiają, że oprawa robi się bardziej elastyczna i można jej dłużej używać.

– Skoro mowa o materiałach, to jakie inne materiały poza wymienionymi używane są do tworzenia opraw?

– Oczywiście plastik, który współcześnie charakteryzuje się olbrzymią wytrzymałością i lekkością. Zazwyczaj są to grube oprawy, choć lekkie, a także dość miękkie i z tego względu polecane zwłaszcza dla dzieci. W tym celu wykorzystuje się zylonit, czyli octan celulozy – hipoalergiczne tworzywo sztuczne, a także żywicę epoksydową, która po podgrzaniu jest bardzo plastyczna i łatwo dopasowuje się do kształtu twarzy.  W produkcji opraw wykorzystywane są również metale, jak stal chirurgiczna, aluminium, tytan czy beryl. Wszystko zależy od preferencji klienta i zasobności portfela, gdyż niektóre oprawy, jak na przykład tytanowe, mogą być dość drogie.

– A czy można dać drugie życie swoim oprawkom?

– Tak, istnieją firmy i fundacje, także w Polsce, które zajmują się zbieraniem zużytych lub nieużywanych opraw okularowych od optyków. W zasadzie zawsze mam w salonie oprawy, których nie wykorzystam, także na części zamienne przy naprawie okularów moich klientów. Od czasu do czasu pakujemy je i wysyłamy w miejsce, gdzie oprawy są odnawiane. Następnie grupa okulistów i/lub optometrystów jedzie do krajów trzecich i z tych zebranych opraw wykonuje ludziom na miejscu okulary, tak by móc je ponownie wykorzystać, by ktoś się tym cieszył. Chodzimy w oprawie kilka lat i ona nie zużywa się całkowicie, po kilku zabiegach można ją odświeżyć. To są także przydatne materiały szkoleniowe dla szkół kształcących optyków okularowych i optometrystów, a ta dziedzina kształcenia od co najmniej 10 lat bardzo prężnie się w Polsce rozwija.

– Czy możesz opowiedzieć o swojej przygodzie z optyką? 

– Mój salon to firma rodzinna. Firmę rozwijał mój tata i uczył mnie rzemiosła od dziecka. Nie wyobrażam sobie, że mógłbym robić nic innego. Fascynują mnie okulary, technologie optyczne, dobór oprawek, jak skonstruowana jest gałka oczna, jak obraz tworzy się na siatkówce. Moim marzeniem jest w przyszłości zająć się optometrią. Obecny kierunek rozwoju optometrii w Polsce pomaga lekarzom skupić się na leczeniu chorób oczu, nie tylko na doborze korekcji wady wzroku. Tym bardziej, że technologie są coraz bardziej zaawansowane, konstrukcje samych soczewek okularowych zmieniają się w zasadzie z roku na rok, a lekarz okulista niekoniecznie jest świadomy tych zmian konstrukcyjnych. Lekarz skupia się na chorobach, końcowa korekcja wady wzorku pozostaje na poziomie optyka. Dobierając okulary i oprawki wolę sprawdzić receptę, którą dostaję od klienta, zwłaszcza jeśli dotyczy soczewek progresywnych czy relaksacyjnych, gdzie występują kanały progresji czy strefy aberracyjne. Nie są to duże różnice między główną receptą a moją poprawką, często jest to 0,5 dioptrii bądź nieznacznie zmieniona oś cylindra, ale jesteśmy w stanie tak doprecyzować to badanie wstępne, aby wycisnąć jak najwięcej z soczewki. Współcześnie soczewki są bardziej precyzyjne i wymagają od optyków większej precyzji pomiarowej. Wykonuje się je z wykorzystaniem technologii cyfrowych, gdzie każda 0,1 mm w wysokości montażowej bądź rozstawie źrenic czy w dopasowaniu kanału progresji ma ogromne znaczenie dla pacjenta, jego adaptacji do nowych okularów i komfortu ich użytkowania.

– Rozmawiając o technologii, czy możesz proszę powiedzieć czy rozszerzona rzeczywistość wykorzystywana jest np. przy doborze oprawek. Czy to się dzieje?

– Tak, są firmy optyczne, które z tym eksperymentują. Pacjent staje wówczas przed urządzeniem, komputer wykonuje skan twarzy, następnie na podstawie algorytmu wylicza, jaka oprawa będzie optymalna do danej twarzy i drukuje ją w 3D. Jak to działa w praktyce, jeszcze tego nie widziałem, ale ciekawy jestem czy dobór ten – będący w zasadzie czystą matematyką – sprawdzi się w praktyce. Wszak każda twarz jest inna, komputer oczywiście może robić bardzo dokładne skany, ale czy to akurat wyliczenie będzie dobre dla danego pacjenta, to może być zawsze kwestia sporna, bo wchodzą tutaj kwestie subiektywne, własnej oceny, czego maszyna nie jest w stanie ocenić. Oczywiście, można napisać program, w którym pacjent będzie mógł wprowadzić swoje preferencje dotyczące takiej oprawy, ale nie ma żadnej pewności czy wynik końcowy będzie go satysfakcjonował. To już w niektórych miejscach działa, ale nadal nie ma zastosowania komercyjnego na szeroką skalę.

– Teraz często chcemy mieć kilka opraw, zwłaszcza kiedy mamy wadę wzroku i nie chcemy bądź nie możemy stosować soczewek kontaktowych. Traktujemy je trochę jak perfumy czy zegarek– mam dziś taką stylizację i w związku z tym mam chęć na taką, a nie inną oprawę.

– Dokładnie, ja mam tak z okularami przeciwsłonecznymi. Mam ich całe mnóstwo i żadnych nie mogę się pozbyć, bo wszystkie lubię. Okulary są dzisiaj integralną częścią naszego wizerunku, niezależnie czy mamy wadę wzroku czy nie.

– Skoro jesteśmy przy temacie okularów funkcjonalnych, to jakie są inne typy okularów są jeszcze stosowane w różnych obszarach życia?

–  Są na przykład okulary sportowe, których soczewki są dedykowane dla golfistów, bilardowców, biegaczy itp., którzy z różnych względów nie mogą skorzystać z soczewek kontaktowych. Często są to specjalne soczewki, zwłaszcza progresywne, stworzone z myślą, by przy uprawianiu konkretnych sportów zapewnić optymalny komfort funkcjonowania.  Na przykład dla kolaży, którzy potrzebują mieć pełne spektrum widzenia. Są też okulary ochronne dla osób pracujących w trudnych warunkach – spawaczy, tokarzy – w nich też istnieje możliwość korekcji. Ciekawym przykładem są okulary balistyczne, przeznaczone głównie dla zaawansowanych strzelców po 40 r. życia, którzy napotykają na problem właściwy dla wszystkich prezbiopów, chcąc widzieć muszkę i cel jak za starych dobrych lat, jednak wada wzroku już na to nie pozwala. I tutaj też okulary dedykowane mają swoje zastosowanie.

– Skąd pozyskujesz oprawki? Jakie są wiodące kraje w produkcji oprawek i jak na tym tle plasuje się Polska?

– Polska wypada całkiem nieźle, mamy coraz więcej rodzimych producentów opraw okularowych i jakość tych opraw nie odbiega od ich zagranicznych konkurentów. Oprawy są naprawdę dobrze wykonane, do ich produkcji wykorzystane są wysokiej jakości materiały, a pod względem ceny są one zdecydowanie bardziej przyjazne niż zagraniczne. W swoim salonie mam również bogatą ofertę opraw z Włoch i Francji, gdyż uwielbiam je za design i często ręczne wykonanie, są doskonale wyprofilowane i zapewniają wysoką jakość noszenia. Cenię też oprawy z Hiszpanii, które eksplodują kolorami i odważną, nowoczesną stylistyką, a do tego są bardzo lekkie i przyjemne w użytkowaniu. Polskie oprawy są świetnie wykonane, ale sam design jeszcze wymaga pracy, w tym zakresie często czerpiemy inspirację od producentów zagranicznych.

– Jak widzisz przyszłość branży oprawkowej?

– Od momentu, od kiedy jestem w optyce okularowej, czyli od ponad 20 lat, branża przeszła prawdziwą rewolucję. Zmiany dzieją się na naszych oczach, a wyznacza je lifestyle, gdyż wraz ze zmianami stylu życia zmieniają się potrzeby klientów. Stąd też niesamowita popularność okularów przeciwsłonecznych, które oprócz swej funkcji ochronnej są właściwie akcesorium modowym, nowe pomysły producentów opraw na kształty, nakładki, efektowne zauszniki – wszystko to co pozwala wyróżnić się z tłumu, podkreślić indywidualność i często też status materialny. Jeśli chodzi o design, to wiele modeli opraw powraca. Można powiedzieć, że każdy rodzaj oprawy będzie mieć swój czas, co prawda w nowej odsłonie. Również technologia materiałowa pozwala w designie na nieporównywalnie więcej niż dawniej.

W szerszym ujęciu zmiany w branży podyktowane są też intensywną cyfryzacją całego sektora optycznego. Dziś niektóre salony oferują konsultacje na odległość za pośrednictwem Internetu, prowadząc wysyłkową sprzedaż okularów i częściowo zdalny dobór opraw. Wówczas klient w domu może wypróbować kilka wstępnie wybranych opraw i spokojnie zdecydować się na swój model. Osobiście uważam, że w dłuższej perspektywie nie zastąpi to jednak osobistej konsultacji z optykiem z uwagi na konieczność dokonania dodatkowych pomiarów w salonie i indywidualnego dopasowania opraw do twarzy pod względem funkcjonalnym, nie tylko estetycznym.

Do salonów wkracza też nowoczesne oprogramowanie na gruncie usług optycznych, w tym biometria oraz technologie VR, które pozwalają pozyskać obszerną ilość danych niezbędnych do wykonania zindywidualizowanych soczewek optymalnie dopasowanych do potrzeb danego pacjenta. Takie oprogramowanie tworzone jest również w Polsce. Współpracujemy w tym zakresie z firmą Szajna z Gdyni, która jest producentem soczewek progresywnych i oferuje urządzenie diagnostyczne VR, pozwalające śledzić zachowanie oka w czasie rzeczywistym przy różnej akomodacji i warunkach widzenia. Pozyskane w ten sposób dane dostarczają dodatkowych informacji o zachowaniu oka pacjenta w różnych warunkach i umożliwiają optymalny dobór soczewek progresywnych.

Przyszłość dzieje się już dziś, a sama branża optyczna ma duży potencjał wzrostu, także z uwagi na stale rosnącą liczbę osób wymagających korekcji wzroku na różnych etapach życia. Z ciekawością i uwagą śledzę najnowsze okularowe trendy, by móc zapewnić moim klientom wysokiej jakości produkt, w pełni satysfakcjonujący pod względem medycznym, funkcjonalnym i estetycznym. 

Bardzo dziękuję za spotkanie i życzę powodzenia w dalszym rozwoju działalności!

Wywiad z Jarosławem Bugajem, właścicielem Salonu Optycznego Studio Optyk w podwarszawskim Wołominie przeprowadziła Joanna Kartasiewicz, Research Funding Manager.

Specjalne podziękowania dla firmy Szajna za możliwość przetestowania ich urządzenia diagnostycznego wykorzystującego technologię VR.

13.10.2022

Zafascynowany okiem: Prof. Marco Ruggeri przekłada potrzeby kliniczne na badania, nowe technologie okulistyczne i patenty

Dnia 23 września 2022 r. nasz ośrodek odwiedził prof. Marco Ruggeri z Bascom Palmer Eye Institute. Obszar jego specjalizacji obejmuje instrumentarium i technologie obrazowania ilościowego do zastosowań diagnostycznych i chirurgicznych w okulistyce. Mając podpisany list intencyjny z Bascom Palmer Eye Institute, omówiliśmy potencjalną współpracę szukając wspólnych projektów do realizacji, szczególnie w zakresie procedur okulistycznych. Nasi naukowcy dr Andrea Curatolo, dr Karol Karnowski, dr Sławomir Tomczewski i mgr Marcin Marzejon oprowadzili prof. Ruggeriego po laboratoriach i omówili aktualne badania. Prof. Wojtkowski spotkał się również z gościem, aby porozmawiać o przyszłych projektach. Podczas wizyty prof. Ruggeri udzielił wywiadu naszemu działowi komunikacji i PR na temat popularyzacji i rozpowszechniania nauki w Stanach Zjednoczonych oraz podzielił się swoim stanowiskiem dotyczącym promowania badań i docierania do jak najszerszego grona odbiorców z wiedzą ekspercką w dziedzinie zdrowia oczu i nowych technologii okulistycznych.

Wywiad z prof. Marco Ruggeri

Proszę powiedzieć, jak Pana specjalizacja przekłada się na poprawę stanu wiedzy specjalistycznej i doskonałości w badaniach nad wzrokiem.

Pracuję w obrębie kilku nisz. Po pierwsze, chcemy poprawić widzenie w starszym wieku, aby ludzie mogli zachować jakość widzenia w późniejszym okresie życia. W pierwszej kolejności staramy się zrozumieć, dlaczego z wiekiem tracimy zdolność do skupiania wzroku na przedmiotach znajdujących się blisko, co jest stanem znanym jako prezbiopia. W tym celu badamy mechanikę akomodacji, która jest systemem automatycznego ustawiania ostrości ludzkiego oka. Jest to kluczowa część procesu, ponieważ jeśli nie wiemy, jak działa, nie będziemy w stanie go naprawić. Musimy dowiedzieć się, dlaczego tracimy tę zdolność z wiekiem, abyśmy mogli temu przeciwdziałać. Ponieważ moją specjalnością jest optyka i obrazowanie, sposób w jaki to robię polega na wizualizacji i analizie za pomocą naszej technologii obrazowania tego, co dzieje się wewnątrz oka w prawdziwym życiu, kiedy patrzymy na bliskie obiekty i jak to się zmienia z wiekiem. Używamy tej technologii również do oceny skuteczności istniejących procedur korygowania tego stanu, co jest ważne, ponieważ dostarcza informacji zwrotnej producentom, aby mogli poprawić swoje produkty.

Pracuję również nad technologią obrazowania służącą do wczesnego wykrywania chorób oczu, takich jak na przykład keratoconus. Jest to istotne, ponieważ dzięki naszej technologii klinicyści będą mogli działać wcześnie i zarządzać chorobą na czas, aby maksymalnie zachować wzrok u pacjentów. Ale to nie wszystko, ponieważ narzędzia, które opracowujemy, zapewniają również klinicystom sposób na zrozumienie, czy obecne terapie, które stosują, są skuteczne, czy też nie, co poprawia zarządzanie chorobą.
Naszym celem, jako badaczy zajmujących się badaniami translacyjnymi, jest szybsze i skuteczniejsze wprowadzanie odkryć i technologii z zakresu nauk podstawowych do praktyki. Nasze centrum badań nad widzeniem jest do tego idealnym miejscem, ponieważ znajdujemy się dosłownie po drugiej stronie ulicy od szpitala Bascom Palmer Eye Institute, który jest jednym z największych w USA. Nasze podejście polega na rozmowie z klinicystami i określeniu, jakie są rzeczywiste potrzeby kliniczne, a następnie znalezieniu rozwiązania. Pytamy ich, jakie odkrycie naukowe byłoby przełomowe w dziedzinie okulistyki i ułatwiłoby im życie, a na ich opiniach warto się skupić.

Na przykład, nasz instytut organizuje ochody kliniczne (tzw. grand rounds) w każdy czwartek rano, gdzie okuliści konferują na temat złożonych przypadków klinicznych, które omawiają wymieniając różne podejścia do danej choroby lub urazu. To jeden z najlepszych sposobów na zrozumienie, jakie są potrzeby kliniczne. Po prostu idziesz tam, słuchasz, patrzysz na to, co robią, zachowujesz ciszę, robisz notatki, masz pomysły i rozmawiasz z nimi. Robię to od lat i do tej pory znam większość okulistów w moim szpitalu całkiem dobrze. Niektórzy z tych klinicystów w końcu stali się przyjaciółmi. Piszę do nich SMS-y, gdy potrzebuję ich opinii na temat projektu badawczego, a oni piszą do mnie, gdy mają nową potrzebę kliniczną. Zdaję sobie sprawę, że może to nie być konwencjonalny sposób ustalania priorytetów naukowych, ale dla mnie okazał się on niezwykle skuteczny. I ma dodatkową korzyść, jest to doskonała forma rozpowszechniania mojej pracy naukowej. Wysyłam też okulistom moje publikacje, prezentacje mojej pracy naukowej, dzielę się z nimi wiedzą, którą zgłębiam przede wszystkim kierowany oddolną potrzebą kliniczną.

Podsumowując cykl życia mojej pracy, najpierw przyglądam się potrzebie klinicznej, a gdy zidentyfikuję sensowny projekt, staram się o środki na jego realizację. Odbywa się to poprzez przygotowanie wniosku o dotację wraz z klinicystą. Od złożenia wniosku do uzyskania wielomilionowego grantu z jednostek federalnych, takich jak Narodowy Instytut Zdrowia, mijają lata, dlatego ważne jest, aby być zdyscyplinowanym i działać wcześnie. Po otrzymaniu finansowania prowadzę wspólne badania z okulistami, a ścieżka jest zwykle taka sama, opracowujemy oprzyrządowanie i metody, przechodzimy do badań klinicznych na pacjentach i sprawdzamy, jak może to wpłynąć na praktykę kliniczną. Ostatecznym celem jest korzyść dla opieki nad oczami pacjentów, więc kiedy osiągamy koniec projektu badawczego i technologia jest opracowana, zaczynamy zwracać się do firm, aby zobaczyć, czy są chętni do komercjalizacji naszej technologii i doprowadzenia jej do skutku dla pacjentów.

Jak rozpoczęła się Pana przygoda z obrazowaniem optycznym i dlaczego wybrał Pan właśnie tę dziedzinę?

Najpierw zaczęło się od oka, jeszcze przed obrazowaniem optycznym. Oko jest bardzo fascynującą częścią ciała pod wieloma względami. Obejmuje funkcje mechaniczne i optyczne, przekształca światło w sygnały elektryczne, które wędrują do mózgu i mogą być wykorzystywane jako okno na resztę ciała. Zaangażowałem się w badania nad oczami we Włoszech podczas mojego projektu pracy magisterskiej z inżynierii elektrycznej – rozwoju optycznego czujnika do monitorowania stężenia glukozy w oku jako potencjalnego środka oceny stężenia glukozy we krwi. Zamiast wykrywać stężenie glukozy we krwi, celem było nieinwazyjne zmierzenie go przez przednią komorę oka za pomocą techniki optycznej zwanej polarymetrią. W ten sposób zainteresowałem się badaniami oka, choć wtedy nie było to jeszcze obrazowanie. Po ukończeniu studiów szukałem możliwości pracy za granicą w zakresie technologii pomiarowych stosowanych w badaniach oka. Znalazłem wtedy stanowisko research associate w zespole w Bascom Palmer Eye Institute opracowującym jedno z pierwszych wdrożeń wysokorozdzielczego obrazowania OCT do badania siatkówki człowieka i siatkówki małych zwierzęcych modeli chorób tego organu. To właśnie w tym czasie zapoznałem się z pionierskimi pracami prof. Wojtkowskiego nad obrazowaniem OCT w domenie spektralnej. W 2022 r. mija siedemnasty rok mojej pracy w Bascom Palmer Eye Institute.

Czy pacjenci w USA mają świadomość, że dokładniejsze metody obrazowania oczu prowadzą do skuteczniejszych terapii chorób oczu?

Z mojego doświadczenia wynika, że niewystarczająco.

W jaki sposób upowszechnia Pan wyniki swoich badań i publikacje?

Uczestniczyłem w National Alliance for Eye and Vision Research, organizacji promującej rzecznictwo i edukację publiczną w zakresie badań nad okiem i widzeniem sponsorowanych przez National Institute of Health i inne agencje federalne w USA. Każdego roku wybierają kilku badaczy w dziedzinie widzenia i szkolą ich, aby edukować ustawodawców z Kongresu, media i konsumentów na temat wartości badań nad oczami i wzroku. Na przykład spotkaliśmy się z decydentami rządowymi i wyjaśniliśmy znaczenie przeznaczania pieniędzy podatników na badania nad wzrokiem, a także przekonywaliśmy ich do promowania większego finansowania badań nad wzrokiem w następnym projekcie ustawy. W dłuższej perspektywie pozwoli to zaoszczędzić pieniądze podatników, ponieważ finansowane badania zostaną wydane na poprawę opieki zdrowotnej.

Obrazowanie OCT jest doskonałym przykładem tego, jak technologia może prowadzić do znacznych oszczędności środków publicznych, z szacunkowym ponad 10 miliardów dolarów redukcji wydatków w ciągu ostatnich 15 lat. Oszczędności są wynikiem tego, że klinicyści są w stanie zapewnić bardziej spersonalizowaną opiekę nad oczami poprzez wykorzystanie OCT do podjęcia decyzji, kiedy zastrzyk na receptę jest potrzebny w leczeniu niektórych form zwyrodnienia plamki żółtej. Dzięki OCT, proces ten został zoptymalizowany poprzez zmniejszenie liczby potrzebnych zastrzyków, jak również komplikacji i dyskomfortu pacjentów.

Jeśli chodzi o ogół społeczeństwa, nie ma zbyt wielu kanałów rozpowszechniania naszych badań i podkreślania ich znaczenia, ale w przypadku popularyzacji nauki, staram się używać tego samego prostego języka i przekazu, co w przypadku decydentów, pokazując korzyści z badań stosowanych w okulistyce. Pracując w szpitalu, mam świetną okazję tłumaczyć to bezpośrednio pacjentom, gdy biorą udział w naszych badaniach klinicznych. Inne kanały dotarcia do szerszej publiczności to media społecznościowe, takie jak Instagram, LinkedIn, Facebook.

Proszę opowiedzieć o działaniach Bascom Palmer Eye Institute ukierunkowanych na promocję badań i nauki o oczach.

Nasz dział komunikacji i marketingu regularnie wydaje magazyn o nazwie „Images”, który skupia się na postępach medycznych i naukowych w naszej instytucji. Można tam na przykład przeczytać, jak nasi lekarze i naukowcy prowadzą walkę ze zwyrodnieniem plamki żółtej i jak pomagamy niemowlętom widzieć. Nawiązaliśmy również współpracę z lokalnym muzeum nauki w Miami, gdzie naukowcy i klinicyści z naszej instytucji organizują wieczorne seminaria, aby edukować społeczeństwo w zakresie naszych badań. Poza tym Bascom Palmer ma oficjalne kanały również na mediach społecznościowych, a my jesteśmy zachęcani przez dział komunikacji i PR do współpracy, aby promować naszą pracę bezpośrednio na profilach naszej instytucji.

Jaka jest Pana zdaniem najlepsza formuła przybliżenia szerszej publiczności znaczenia i istoty pracy naukowca zajmującego się badaniami oczu?

Na ogół naukowcom bardziej odpowiadają konwencjonalne i formalne sposoby upowszechniania badań, takie jak publikacje na łamach czasopism naukowych, seminaria i prezentacje na konferencjach.  Chociaż jest to kluczowe dla przekazywania korzyści z naszych badań innym badaczom i profesjonalnym praktykom, ma ograniczony zasięg dla szerszej społeczności. Nowsze pokolenie naukowców generalnie wykonuje lepszą pracę w zakresie promowania znaczenia ich badań na nieformalnych kanałach, takich jak platforma mediów społecznościowych. Posiadanie działu marketingu jest doskonałym narzędziem do informowania społeczeństwa o wynikach badań. Jak już wcześniej wyjaśniłem, pomocny jest bezpośredni kontakt z pacjentami. Wizyty w szkołach są również dobrym sposobem na wprowadzenie młodych ludzi do nauki i przyzwyczajenie ich do znaczenia badań naukowych. Artykuły popularnonaukowe mogą być również publikowane w prasie głównego nurtu lub można w celu popularyzatorskim organizować imprezy z lokalnymi muzeami.

Czy zauważa Pan jakieś różnice w amerykańskim i europejskim podejściu do PR-u nauki, a jeśli tak, to jakie?

Europejczycy włożyli wiele wysiłku w promocję swoich badań, obserwujemy na przykład, że naukowcy są zachęcani do posiadania własnych stron internetowych laboratoriów czy kont na social mediach. W USA promocją pracy naukowców zajmują się zwykle uniwersyteckie działy komunikacji. W Europie również funkcjonują świetne mechanizmy promocyjne, np. przy otrzymaniu grantu zachęca się do reklamowania swoich badań np. na koncie na Twitterze. W USA pracuje dla nas specjalny dział marketingu, oni zawsze szukają nowości, ale nie jesteśmy naciskani i tylko od nas zależy, jak bardzo wykorzystamy ich zasoby, by dać się poznać szerszej publiczności.

Chcielibyśmy poznać Pana najważniejszy cel zawodowy w służbie społeczeństwu.

Generowanie rozwiązań mających na celu poprawę opieki nad oczami. Nadrzędnym sensem mojej pracy jest przynoszenie poprawy widzenia pacjentów, najlepiej przechodząc od badań do technologii komercyjnej. Moim marzeniem jest, aby pewnego dnia ludzie w potrzebie mogli korzystać z opracowanej przeze mnie technologii.

Proszę podzielić się swoimi wrażeniami z Polski i z dotychczasowej współpracy z polskimi naukowcami.

Po raz pierwszy odwiedziłem Polskę we wrześniu tego roku. Moje wrażenie jest takie, że polski rząd inwestuje znaczne ilości zasobów i pieniędzy w badania naukowe. Widzę, że jednostki naukowe mają dostęp do wielu grantów i innych źródeł finansowania badań. Najnowocześniejsze technologie opracowywane przez Państwa centrum i inne instytucje sugerują, że poziom edukacji jest w Polsce bardzo zaawansowany. Biorąc udział w różnych konferencjach, na których spotykałem polskich naukowców, mogę potwierdzić, że nigdy nie zawiedli oni w prezentowaniu badań na najwyższym poziomie. Ponadto, jesteście bardzo otwarci i cenicie sobie współpracę. Mocno wierzę we współpracę między naukowcami i uważam, że globalne badania powinny ewoluować w kierunku międzynarodowej i interdyscyplinarnej współpracy, aby zjednoczyć siły i stać się komplementarnymi w tym, co robimy. To jest właśnie siła dzisiejszej nauki, którą umożliwiają nowoczesne technologie i narzędzia komunikacji.

Bardzo dziękuję za rozmowę i za wizytę w ICTER, profesorze Marco Ruggeri. Cieszymy się na współpracę z Panem i nie możemy się doczekać rozpoczęcia wspólnych projektów naukowych.

Od lewej do prawej: dr Andrea Curatolo, prof. Marco Ruggeri i prof. Maciej Wojtkowski.

Zdjęcie: dr Karol Karnowski.

Wywiad przeprowadziła Manager ds. Komunikacji i PR, dr Anna Przybyło-Józefowicz.

13.10.2022

Światowy Dzień Wzroku 2022

Światowy Dzień Wzroku obchodzony corocznie w drugi czwartek października to ogólnoświatowe wydarzenie mające na celu zwrócenie uwagi na ślepotę i zaburzenia widzenia. Został on pierwotnie zainicjowany przez Sight First Campaign of Lions Club International Foundation w 2000 roku. Od tego czasu został zintegrowany z VISION 2020 i jest koordynowany przez IAPB we współpracy ze Światową Organizacją Zdrowia. Każdego roku mają inne motywy z okazji Światowego Dnia Wzroku. W 2021 r. kampania „Love Your Eyes” zachęcała nas do dbania o własne zdrowie oczu i skupiła uwagę ponad miliarda ludzi na całym świecie, którzy doświadczyli utraty wzroku i nie mają dostępu do usług okulistycznych.

Wzrok odgrywa najważniejszą rolę w odkrywaniu tego pięknego świata. Oko i mózg współpracują ze sobą, aby pomóc w prawidłowych mechanizmach widzenia. Należą do nich nerwy rogówki, soczewki, siatkówki i wzroku. Rogówka jest przednią warstwą oka i działa poprzez zaginanie światła wpadającego do oka. Soczewka znajduje się za tęczówką i źrenicą i współpracuje z rogówką, skupiając światło wpadające do oka, podobnie jak kamera. Obiektyw sprawia, że ​​obraz przed Tobą jest ostry, co pozwala wyraźnie widzieć. Siatkówka znajduje się w tylnej części oka, która zamienia światło na sygnały elektryczne. Sygnały te są wysyłane do mózgu, gdzie są rozpoznawane jako obrazy, a nerw wzrokowy przekazuje sygnały elektryczne utworzone w siatkówce do mózgu. Na koniec mózg tworzy obrazy z otrzymanym sygnałem elektrycznym lub bodźcem. Komórki fotoreceptorowe biorące udział w cyklu widzenia to pręciki, w przeciwieństwie do światłoczułych komórek zwojowych. Pręciki radzą sobie głównie z niskim poziomem światła i nie pośredniczą w widzeniu kolorów. Z drugiej strony, czopki mogą kodować kolor obrazu i zawierają trzy różne typy czopków. Każdy czopek ma inną opsynę, więc będą reagować na określoną długość fali lub kolor i światło. Klasyczny cykl widzenia jest inicjowany przez konwersję pojedynczego fotonu energii świetlnej na sygnał elektryczny w siatkówce. Transdukcja sygnału zachodzi dzięki opsynie, która jest receptorem sprzężonym z białkiem G i zawiera chromofor 11-cis-siatkówkowy. Kiedy foton uderza, mechanizm fototransdukcji rozpoczyna się wraz z kilkoma mechanizmami kaskadowymi. 11-cis-retinalu ulega fotoizomeryzacji do all-trans-retinalu, co prowadzi do zmiany konformacji GPCR opsyny. Zbiorowe zmiany w potencjale receptorowym pręcików i czopków wywołane fototransdukcją wyzwalają impulsy nerwowe, które nasz mózg interpretuje jako widzenie. Po procedurze izomeryzacji i uwolnieniu z opsyny, all-trans-retinal jest redukowany do all-trans-retinolu, a następnie przenoszony do nabłonka barwnikowego siatkówki. W komórkach nabłonka barwnikowego siatkówki zachodzi kilka etapów, takich jak estryfikacja i wiele innych, które prowadzą do wytworzenia 11-cis-retinolu, który jest dalej utleniany do 11-cis-retinalu przed powrotem do fotoreceptorów, aby połączyć się z opsyną, tworząc rodopsynę.

Widzenie kręgowców jest całkowicie zależne od ciągłego dostarczania chromoforu 11-cis-retinalu. Istnieje kilka enzymów zaangażowanych w cykl widzenia, a mutacje w genach białek cyklu retinoidowego często powodują zaburzenia widzenia. Mutacja w enzymie dehydrogenazy retinolowej 5 powoduje jedynie łagodny kliniczny defekt fenotypowy w oku, ale mutacja w RPE65 powoduje ciężką chorobę zaślepienia zwaną wrodzoną ślepotą Lebera (LCA). Mutacje w genie rodopsyna są główną przyczyną barwnikowej siatkówki, w postaci autosomalnej dominującej i recesywnej barwnikowej siatkówki. Myszy z nokautem z mutacją w genie opsyny pręcikowej przestają tworzyć zewnętrzny segment pręcika i nie wykazują odpowiedzi elektroretinograficznej pręcika (ERG), ale wykazują reakcję czopków we wczesnym okresie życia i ostatecznie znikają w wieku trzech miesięcy.

Zwyrodnienie plamki żółtej Stargardta jest najczęściej dziedziczoną makulopatią występującą w młodym wieku. Objawy tej choroby zaczynają się od niewyraźnego widzenia z postępującą utratą centralnego widzenia, centralnych martwych punktów i zmniejszonej zdolności postrzegania kolorów. Charakteryzuje się nagromadzeniem pigmentu lipofuscyny w komórkach RPE, co prowadzi do degeneracji i śmierci komórek fotoreceptorowych. Choroba ta jest spowodowana głównie mutacją w genie ABCR4.

W cyklu wizualnym all-trans-retinal jest redukowany do mniej toksycznej formy all-trans-retinolu przez kilka dehydrogenaz alkoholowych, takich jak RDH8 i RDH12. Żadna mutacja w RDH8 nie została powiązana z dystrofią siatkówki u ludzi. Myszy z mutacją nokautową w genie RDH8 wykazują normalną kinetykę regeneracji rodopsyny i opóźniony powrót wrażliwości po ekspozycji na jasne światło.

Istnieją trzy sposoby leczenia choroby spowodowanej mutacjami w genach cyklu retinoidowego, które zostały dotychczas zbadane. Pierwszym z nich jest zastąpienie wadliwych genów wirusową terapią genową. Zastąpienie genu zakończyło się sukcesem w modelach organizmów myszy i psów dla LCA spowodowanej mutacją w genie RPE65. Wkrótce rozpoczną się badania kliniczne na ludziach z LCA za pośrednictwem RPE65.

Druga strategia polega na farmakologicznym zastąpieniu brakującego chromoforu. Nadaje się do chorób spowodowanych zaburzoną biogenezą chromoforu, takich jak LCA za pośrednictwem RPE65.

Jak już wspomniano, każdy enzym/białko ma swoje znaczenie w cyklu widzenia, trzecią strategią leczenia zaburzeń widzenia jest spowolnienie syntezy chromoforu poprzez zahamowanie niektórych etapów cyklu widzenia lub ograniczenie dostępności wszystkich prekursorów trans-retinolu. To podejście ma zastosowanie do chorób związanych z akumulacją toksycznych fluoroforów lipofuscyny, takich jak A2E. Poprzez częściowe wyczerpanie rodopsyny zmniejsza się ilość all-trans-retinalu uwalnianego przez ekspozycję na światło.

Oprócz nich istnieje wiele powszechnych chorób związanych ze wzrokiem, które są również główną przyczyną ślepoty i słabowidzącego we wczesnym okresie życia. Niektóre z głównych chorób to związane z wiekiem zwyrodnienie plamki żółtej, zaćma, retinopatia cukrzycowa i jaskra. Błędy refrakcji są najczęstszą chorobą oczu zgłaszaną w większości populacji. Należą do nich krótkowzroczność (krótkowzroczność), nadwzroczność (dalekowzroczność), astygmatyzm (zniekształcone widzenie na wszystkie odległości). Można je korygować za pomocą okularów, soczewek kontaktowych i laseroterapii, co jest obecnie również powszechnym podejściem. Zaćma to kolejna choroba, która jest główną przyczyną ślepoty na całym świecie. W zaćmie pacjent zaobserwował zmętnienie soczewki oka, co prowadzi do nieostrości widzenia. Można go wyleczyć za pomocą laseroterapii, ale bariery dostępu, koszty leczenia i brak świadomości w krajach rozwijających się i biednych sprawiają, że jest to jedna z poważnych przyczyn utraty wzroku. Retinopatia cukrzycowa jest częstym powikłaniem spowodowanym cukrzycą. W tej chorobie powstają nowe kruche naczynia krwionośne, które mają dość nieszczelny charakter. Retinopatia cukrzycowa zwykle dotyczy obu oczu.

W obecnej epoce istnieje kilka dróg dostarczania leków do korygowania zaburzeń widzenia lub chorób oczu za pomocą analogów retinoidów. Te potencjalnie dostępne leki retinoidowe mogą być dostarczone w postaci kropli do oczu, wstrzyknięć wewnątrzgałkowych do różnych przedziałów oka lub wstrzyknięć okołooczodołowych do tłuszczu otaczającego oko. Główną wadą w dziedzinie okulistyki jest brak wysokiej rozdzielczości obrazów siatkówki. Ale w dzisiejszych czasach pojawia się promień nadziei dzięki nowemu zastosowaniu mikroskopii dwufotonowej, która wykorzystuje wewnętrzną fluorescencję retinoidów, umożliwiając wizualizację struktur komórkowych RPE u żywych zwierząt. Wraz z dalszym rozwojem technika ta może dostarczyć nowych informacji na temat metabolizmu retinoidów i odpowiedzi na leczenie chorób oczu u ludzi.

Autorstwo: Grupa Zintegrowanej Biologii Strukturalnej

22.09.2022

Projekt „Two photon vision and two photon eye imaging (2×2-PhotonVis)”

Projekt „Two photon vision and two photon eye imaging (2×2-PhotonVis)” był realizowany w ramach IChF PAN, a następnie ICTER od grudnia 2017 do września 2022 roku. Głównym celem projektu było opracowanie nowatorskich i oryginalnych metod optycznych oraz oprzyrządowania do badań funkcjonalnych wzroku ludzi i zwierząt, z wykorzystaniem procesów absorpcji dwufotonowej i fluorescencji wzbudzonej dwufotonowo. Projekt poszerzył naszą wiedzę na temat właściwości optycznych siatkówki ludzkiej i gryzoni oraz jej podatności na nieliniowe procesy optyczne dwufotonowej izomeryzacji chromoforów rodopsyny i dwufotonowo wzbudzonej fluorescencji w komórkach RPE. Efektem projektu było dziewięć prac opublikowanych w czasopismach indeksowanych przez JCR.

Źródło obrazu: figura 8 – https://doi.org/10.1172/jci.insight.121555

Projekt POIR.04.04.00-00-3D47/16 jest realizowany w ramach programu TAEM TECH Fundacji na rzecz Nauki Polskiej współfinansowanego ze środków UE pochodzących z Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Inteligentny Rozwój.

Autor tekstu: Dr. Slawomir Tomczewski
Lider projektu: Prof. Maciej Wojtkowski
Strona www projektu: https://2photon.icter.pl/

Powiązana publikacja: JCI Insight – Two-photon imaging of the mammalian retina with ultrafast pulsing laser

Two-photon imaging of the mammalian retina with ultrafast pulsing laser

Abstract

Noninvasive imaging of visual system components in vivo is critical for understanding the causal mechanisms of retinal diseases and for developing therapies for their treatment. However, ultraviolet light needed to excite endogenous fluorophores that participate in metabolic processes of the retina is highly attenuated by the anterior segment of the human eye. In contrast, 2-photon excitation fluorescence imaging with pulsed infrared light overcomes this obstacle. Reducing retinal exposure to laser radiation remains a major barrier in advancing this technology to studies in humans. To increase fluorescence intensity and reduce the requisite laser power, we modulated ultrashort laser pulses with high-order dispersion compensation and applied sensorless adaptive optics and custom image recovery software and observed an over 300% increase in fluorescence of endogenous retinal fluorophores when laser pulses were shortened from 75 fs to 20 fs. No functional or structural changes to the retina were detected after exposure to 2-photon excitation imaging light with 20-fs pulses. Moreover, wide bandwidth associated with short pulses enables excitation of multiple fluorophores with different absorption spectra and thus can provide information about their relative changes and intracellular distribution. These data constitute a substantial advancement for safe 2-photon fluorescence imaging of the human eye.

Autorzy:

Grazyna Palczewska, Patrycjusz Stremplewski, Susie Suh, Nathan Alexander, David Salom, Zhiqian Dong, Daniel Ruminski, Elliot H. Choi, Avery E. Sears, Timothy S. Kern, Maciej Wojtkowski, Krzysztof Palczewski

30.08.2022

Oblicze współczesnego człowieka renesansu: wywiad z dr Jakubem Bogusławskim, inżynierem laserów pożytecznych

Dr inż. Jakub Bogusławski to naukowiec pracujący nad nową generacją kompaktowych, femtosekundowych laserów światłowodowych do zastosowań biomedycznych. Obecnie jest adiunktem w grupie Obrazowania Optycznego w Międzynarodowym Centrum Badań Oka (ICTER) oraz adiunktem na Wydziale Elektroniki, Fotoniki i Mikrosystemów Politechniki Wrocławskiej. W ostatnim wywiadzie dla Poland Weekly kierownik ICTER prof. Maciej Wojtkowski określił Jakuba jako jednego z pionierów „nieosiągalnych dotąd rozwiązań”, którzy codziennie tworzą „małe cuda”, a gdy skończą jedno, zaczynają nowe wyzwanie, co „świadczy o ich wyjątkowości”. Jakub zajmuje się dziedziną nauki, która wzbudza wiele emocji zarówno pozytywnych jak i negatywnych, jest to sfera jak do tej pory mało rozumiana przez ogólnego odbiorcę, ale niezmiennie kojarzy się z rozwiązaniami przyszłości i nowoczesną technologią. Mamy świadomość, że lasery mogą być śmiercionośną bronią, ale mamy również wyobrażenie, że mogą być one wykorzystywane do innych celów. O jednym z tych pożytecznych zastosowań laserów rozmawiamy z dr inż. Jakubem  Bogusławskim. W tym wywiadzie opowiada nam on o tajnikach swojej pracy oraz przybliża wizerunek człowieka, który buduje lasery wykorzystywane dla dobra społeczeństwa.

Jakubie, pracujesz w Międzynarodowym Centrum Badań Oka (ICTER) projektując lasery. Jest to dość nieoczywiste połączenie, gdyż trudno jest na pierwszy rzut oka znaleźć wspólną płaszczyznę między tymi dwoma światami. Powiedz zatem, co łączy lasery i oczy oraz czy to połączenie nie jest destrukcyjne?

Wręcz przeciwnie. Z jednej strony jeśli przypomnimy sobie lasery prezentowane w filmach i wyobrazimy sobie, że wiązka laserowa trafia do ludzkiego oka, to nabierzemy obaw, że organ ten uległby nieodwracalnemu zniszczeniu. Nie ulegajmy jednak złudzeniu hollywoodzkiej fikcji. Oczywiście, przy odpowiedniej wielkości i dawce energii lasery mogą być szkodliwe dla ludzkiego organizmu. Jednak rozwój nauki i lepsze rozumienie funkcjonowania żywych organizmów pozwolił nam na stworzenie takich warunków, w których ten rodzaj energii jest nieszkodliwy, a nawet okazuje się pożyteczny. Przykładem może być wczesna diagnostyka chorób oczu, czy opracowanie nowych terapii okulistycznych.

Zatem na pytanie co łączy lasery i oczy odpowiedź brzmi: zetknięcie wiązki światła laserowego z ludzkim okiem może nam dostarczyć wiele użytecznych informacji. Jak to się odbywa? Wprowadzenie światła laserowego do oka, a konkretnie do siatkówki i warstwy nabłonka barwnikowego, skutkuje wzbudzeniem fluorescencji. Fluorescencja emitowana jest przez naturalnie występujące fluorofory, które tam się znajdują. Wyemitowane w ten sposób światło w drodze wyjściowej z oka jest rejestrowane użyciem bardzo czułego fotodetektora, czyli fotopowielacza. Układ elementów optycznych służący do tego rodzaju pomiarów nazywamy skaningowym oftalmoskopem laserowym, jest to system całkowicie nieinwazyjny i bezdotykowy. Najpierw doprowadza on światło lasera do oka we właściwy sposób, a później to światło, które z oka wychodzi, czyli fluorescencję, prowadzi do fotodetektora, znajdującego się poza okiem w ramach tego układu. Cały proces opiera się na prowadzeniu światła do i z oka, potem uzyskane dane przetwarzane są w komputerze i uzyskujemy obraz, który może następnie być analizowany i interpretowany. Jest to podobna geometria do tomografii OCT obecnie wykorzystywanej w gabinetach okulistycznych, tylko w tym przypadku używamy innego światła do wzbudzenia i rejestracji efektów zachodzących w oku, ten fenomen nazywamy fluorescencja ze wzbudzeniem dwufotonowym.

Opowiedz, czym się zajmujesz w swojej pracy.

Jestem inżynierem od laserów, zajmuję się konstrukcją i opracowywaniem nowych konfiguracji laserów femtosekundowych czyli takich, które generują bardzo krótkie impulsy światła. Ta właściwość w kontekście badań oka jest bardzo użyteczna, dlatego że rozwiązuje dotychczas istniejący problem braku dostępu do fluoroforów, które znajdują się w siatkówce. Siatkówka jest w tyle oka i zarówno w niej, jak i w nabłonku barwnikowym znajdują się różne fluorofory, które dostarczają informacji o funkcjonowaniu tej siatkówki, przez co możemy zidentyfikować, jakie zmiany tam występują. Technicznym wyzwaniem jest fakt, że fluorofory są pobudzane wykorzystując światło UV, ponieważ absorbują one światło w zakresie tych fal. Niemniej takim promieniowaniem nie można człowiekowi zaświecić do oka dlatego, że jest wysokoenergetyczne i od razu zupełnie zniszczyłoby ten narząd. Odkryliśmy, że wykorzystując impulsy ultrakrótkie w podczerwieni ten problem możemy rozwiązać za pomocą absorpcji dwufotonowej, czyli wykorzystując dwa fotony o dwukrotnie mniejszej energii, która jest bezpieczna dla ludzkiego oka. Za pomocą tej technologii możemy w sposób bezpieczny wprowadzić to światło do oka i uzyskać dostęp do tych fluoroforów, do których wcześniej dostępu nie mieliśmy. To jest uzupełnieniowa informacja, której w inny sposób, przynajmniej w tej chwili, nikt nie potrafi zdobyć w sposób bezpieczny dla wzroku człowieka. A do tego są właśnie potrzebne impulsy femtosekundowe, o odpowiednio dobranych parametrach: muszą być skalibrowane we właściwym zakresie spektralnym, bardzo krótkie, o specyficznej częstotliwości powtarzania. Takich laserów jak dotąd nie było, nie można ich było kupić, a my podjęliśmy się tego, by specjalny laser właśnie o tych parametrach, które są optymalne, zaprojektować i skonstruować. Cała grupa osób pod kierownictwem prof. Grzegorza Sobonia na Politechnice Wrocławskiej była zaangażowana w konstrukcję pierwszego lasera o wspomnianej specyfice. Mimo, że nie brałem udziału w pierwszych etapach, po dołączeniu do zespołu na Politechnice Wrocławskiej ponad rok temu, zajmuję się właśnie inżynierią i konstrukcją tego typu układów. Wszystkie podzespoły potrzebne do konstrukcji tego lasera są komercyjnie dostępne. Niemniej ze względu że jest to laser światłowodowy, jego budowa oparta jest na różnych typach światłowodów, które trzeba odpowiednio zaprojektować, a później połączyć i to promieniowanie w odpowiedni sposób ukształtować. Jest to autorska, wysoce precyzyjna i zaawansowana technologicznie sztuka inżynierii.

Jakie wartości przyświecają Ci w pracy naukowej?

Myślę, że byłaby to użyteczność. Chciałbym, żeby te rzeczy które robię, komuś po prostu do czegoś przydały, żeby tworzyć nowe możliwości, rozwiązywać faktycznie istniejące problemy. To, co robimy w ICTERze jest dobrym tego przykładem, bo nie jest to sztuka dla sztuki, albo nauka dla nauki, tylko na prawdę mamy konkretny problem do rozwiązania. Nasz cel jest bardzo fundamentalny, żeby chronić wzrok ludzi, żeby pomóc w diagnostyce chorób oczu i opracowywaniu nowych terapii okulistycznych.

Jakie są największe wyzwania i najpiękniejsze aspekty pracy naukowej?

Największym wyzwaniem dla wszystkich naukowców jest wiedzieć, czym się zająć, ponieważ przestrzeń kierunków w których można się poruszać jest olbrzymia, a ludzkość już bardzo dużo wie. Zidentyfikowanie problemu i określenie go, a później wybranie czy ta droga, którą chcemy obrać ma sens, czy jest komuś potrzebna, czy ma szanse się udać, czy w ogóle warto się tym zajmować, to jest chyba najtrudniejsze pytanie ze wszystkich. W szczególności, że po drodze są też olbrzymie koszty, bo te badania są bardzo kosztowne, dużo ludzi jest w nie zaangażowanych, wiele czasu jest temu poświęcone, a na początku w ogóle nie wiadomo, czy to ma sens, czy to się da zrobić, czy to nie okaże się zmarnowanym wysiłkiem. Z drugiej strony może to również prowadzić do tych najpiękniejszych aspektów pracy naukowej, ponieważ praca nad jakimś problemem naukowym może pójść w tak nieoczekiwanym kierunku, możemy napotkać mnóstwo zaskoczeń, niespodzianek, totalnie nieprzewidzianych zwrotów akcji. Możemy sobie coś planować, a później okazuje się, że jesteśmy zupełnie gdzie indziej niż myśleliśmy, że będziemy. Dla naukowca jest to fascynujące.

Opowiedz o swoich pasjach poza pracą.

Moją największą pasją jest jedzenie, czyli zarówno gotowanie, jak i samo jedzenie. Lubię czytać książki o kuchni, oglądać programy kulinarne, przy okazji podroży próbuję się dowiedzieć co jest typowym jedzeniem w danym miejscu i dlaczego ludzie to jedzą, to mnie interesuje. Poza tym również uprawiam sporty różnego rodzaju, takie jak bieganie, chodzenie po górach, rower, i sporty wodne, w szczególności windsurfing. Wziąłem udział w kilku maratonach.

Widzę, że Twoje oczy mają dwa odmienne kolory. Z czego wynika ta cecha kondycja i jak się czujesz, mając takie wyjątkowe oczy? Czy wpłynęło to na Twoją decyzję, by prowadzić badania właśnie nad wzrokiem?

Dr inż. Jakub Bogusławski. Zdjęcie: dr Karol Karnowski

Ten efekt nazywany jest heterochromią, czyli wadą genetyczną, która występuje u poniżej 1% populacji, ale nie wpływa na widzenie, ani nie ma innych skutków poza odmiennymi kolorystycznie tęczówkami. Czasem ktoś zauważy, że jedno z nich jest zielone, a drugie brązowe, ale większość osób w ogóle nie reaguje na moje oczy. To uwarunkowanie w ogóle nie wpłynęło na moją decyzję o pracy w ICTER, jestem tu właściwie przez przypadek. Zajmuję się oczami tylko dlatego że zajmuję się laserami, a użyteczność laserów w kontekście badań oka doprowadziła mnie do naszego centrum. Te lasery, które konstruuję mogą się przydać do tego, żeby coś więcej w ludzkim oku zobaczyć niż to, co mogliśmy widzieć dotychczas.

Jakie są Twoje plany zawodowe na kolejne 10 lat?

Przede wszystkim zależy mi na tym, żeby wyniki mojej pracy były przydatne. Chcę konstruować urządzenia, które będą działały i które będą mogły być przez kogoś wykorzystywane. Chciałbym, aby te lasery mogły zrobić coś dobrego dla społeczeństwa. Moim marzeniem jest, aby te rzeczy które konstruuję były praktycznie wykorzystywane, przykładowo by nowe fluorescencyjne obrazowanie oka, można wykorzystać klinicznie i uzyskać informacje, dzięki którym uda się zdiagnozować wcześniej jakąś chorobę. Szerzej patrząc, chciałbym szukać nowych praktycznych zastosowań tych laserów, które potrafimy robić, bo są dość unikalne, żeby te ich cechy wykorzystać gdzieś, gdzie to ma naprawdę uzasadnienie. Taki laser jest dość skomplikowany, dość kosztowny, więc chciałbym szukać takich zastosowań, które dają na tyle dużo nowych informacji i możliwości, żeby to miało praktyczny sens, by ich używać.

W tej chwili, planuję rozwój swojej dalszej kariery w Polsce, można tu robić badania na bardzo dobrym poziomie, a dobrze się tu czuję. Jeździłem kilkukrotnie na staże naukowe za granicę, między innymi pracowałem na Uniwersytecie Kalifornijskim w Irvine w grupie prof. Krzysztofa Palczewskiego, gdzie budowaliśmy podobny układ do tego, który mamy w Warszawie. Ponieważ funkcjonuje tam wydział okulistyki, działają firmy okulistyczne i pracują lekarze, za tym pośrednictwem będziemy tę metodę testować na pacjentach z chorobami oczu. Wcześniej kształciłem się również w Sztokholmie na Royal Institute of Technology KTH, na uniwersytecie Aalto w Finlandii oraz w Helmholtz-Zentrum z Dreźnie. Te wizyty dotyczyły opracowywania nowych typów laserów, lub rozwoju metod kształtowania impulsów.

Właśnie rozpoczynam realizację grantu finansowanego przez NCN, w którym wraz z moim 3-osobowym zespołem będę pracował nad nowej klasy laserem dla potrzeb dwufotonowej oftalmoskopii fluorescencyjnej. Chcemy stworzyć „inteligentny” laser femtosekundowy, który sam będzie potrafił dostosować swoje parametry do obrazowanego obiektu. Tytuł grantu to „Adaptacyjne źródło femtosekundowych impulsów dla wielofotonowej mikroskopii i oftalmoskopii fluorescencyjnej”, a projekt będzie realizowany na Politechnice Wrocławskiej. Więc realizacja tego grantu z pewnością jest jednym z planów na kolejne lata.

Dziękuję ci za ten wywiad, Jakubie. Jestem podbudowana Twoją postawą i życzę Ci powodzenia w realizacji wszystkich planów.

Pomimo że rozwija laserowe technologie przyszłości, które ukształtują postęp okulistyki, dr inż. Jakub Bogusławski jest skromnym naukowcem. Największą wartością, która przyświeca mu w pracy jest użyteczność nakierowana na rozwiązywanie istniejących problemów badawczych. Dzięki niej, przesuwa dotychczas istniejące granice nauki. Jakubowi i jego zespołom z Politechniki Wrocławskiej i ICTER zawdzięczamy wynalezienie laserów, których wiązką można w sposób nieszkodliwy świecić do ludzkiego oka, by zdobywać kluczowe informacje dla rozwoju wczesnej diagnostyki i opracowywania nowych terapii chorób oczu.

Wywiad z dr inż. Jakubem Bogusławskim przeprowadziła dr Anna Przybyło-Józefowicz

Zdjęcia: dr Karol Karnowski

10.08.2022

Sukces komunikacji nauki – wywiad z Brook Hardwick, dyrektor ds. komunikacji korporacyjnej ICFO

Nasi naukowcy, których wcześniejsza kariera związana była z ICFO, badawczym centrum doskonałości utworzonym w 2002 roku przez rząd i Politechnikę Katalonii, zawsze wysoko cenili ten instytut za profesjonalizm w każdym aspekcie jego działalności. W związku z tym obserwowaliśmy również dobre praktyki komunikacyjne ICFO, śledząc ich media społecznościowe, stronę internetową i biuletyny. Często zdarza się, że podziwiając czyjąś pracę, prędzej czy później znajdujemy sposób, by zbliżyć się i dowiedzieć się więcej, zgłębić tajniki ich praktyki zawodowej. Kilka miesięcy temu nawiązaliśmy bezpośredni kontakt z działem komunikacji korporacyjnej, którym od ponad 11 lat kieruje Brook Hardwick. Jesteśmy zaszczyceni, że Brook zgodziła się udzielić nam wywiadu i podzielić swoją dogłębną wiedzą i bogatym doświadczeniem w promowaniu badań i nauki. Jej wkład może przynieść korzyści zarówno nam, jak i innym ośrodkom RDI, ponieważ ICFO reprezentuje jedne z najlepszych europejskich standardów w zakresie PR-u nauki. Przejdźmy do wywiadu, podczas którego Brook odpowiada na pytania o tym, co jest najważniejsze w przekazywaniu wiedzy, o wyzwaniach i fascynujących aspektach jej pracy, oraz czego życzy sobie w przyszłości jako szefowa działu komunikacji korporacyjnej ICFO.

Czy Pani zdaniem lokalizacja wpływa na sposób przekazywania informacji o nauce?

Nasz zespół ds. komunikacji jest zróżnicowany pod względem pochodzenia, narodowości i wieku, lecz kiedy wspólnie pracujemy, jesteśmy kreatywni i bardzo produktywni – to wspaniałe środowisko pracy. Nasz dział odzwierciedla resztę naszego instytutu w ten sposób – kiedy połączysz wysoce zmotywowanych ludzi, którzy kochają to, co robią i lubią współpracować z osobami o różnych perspektywach, nie wiadomo, co wymyślisz!

Przez ponad 12 lat pracowała Pani w Instytucie Wyższych Studiów Biznesowych (IESE) w Barcelonie. Jakie są najważniejsze nauki i strategie PR tam nabyte, które przygotowały Panią do obecnego stanowiska w ICFO?

Oba instytuty stosują strategie oparte na doskonałości instytucjonalnej i dbałości o szczegóły, więc choć jeden z nich koncentruje się na biznesie, a drugi na tworzeniu osiągnięć naukowych na najwyższym międzynarodowym poziomie, niektóre z podstawowych założeń są takie same. Miałam zaszczyt pracować z wyjątkowo inteligentnymi i zmotywowanymi ludźmi oraz mieć możliwość dokumentowania ich postępów i historii. Całe moje dorosłe życie spędziłam w bardzo międzynarodowym otoczeniu, co ułatwiło mi znalezienie się na moim obecnym stanowisku w tym niesamowicie internacjonalnym instytucie. W związku z tym, przez lata nauczyłam się współpracować z koleżankami i kolegami z zupełnie innych środowisk niż moje – z pracownikami administracji, badaczami i studentami. Uważam, że aby pracować na stanowisku związanym z komunikacją, trzeba interesować się ludźmi, ich osiągnięciami i ambicjami. To dla mnie zawsze było najlepszą częścią tej pracy i stanowiło ważny punkt strategiczny dla obu tych instytucji.

Jakie są według Pani największe wyzwania, przed którymi stoją obecnie działy Komunikacji i PR instytucji naukowych?

Jest tak wiele wyzwań – „fake news” i niebezpieczeństwo „hype” na wstępie. Rzetelne dziennikarstwo naukowe konkuruje o uwagę odbiorców, którzy są przyzwyczajeni do „click-bait”/sensacyjnych historii. Oczywiście, musimy utrzymać standardy i skupić się na dokładności, jednocześnie znajdując nowe sposoby na dotarcie do szerszej publiczności i opowiedzenie naszej historii w angażujący sposób. Pracownicy ICFO prowadzą prace zarówno o charakterze naukowym, jak i aplikacyjnym w dziedzinach związanych z medycyną i biologią, zaawansowanymi technikami obrazowania, technologiami informacyjnymi i szeregiem sensorów środowiskowych, laserami przestrajalnymi i ultraszybkimi, naukami kwantowymi, fotowoltaiką oraz właściwościami i zastosowaniami nanomateriałów, takich jak grafen. Na tej długiej i niekompletnej liście znajduje się kilka bardzo seksownych rzeczy, ale czasami można odnieść wrażenie, że trzeba stoczyć walkę pod górę, aby media zwróciły na nas uwagę, jeśli nie ogłaszamy znalezienia lekarstwa na raka lub odkrycia nowej planety.

Jaki jest Państwa magiczny sposób na zainteresowanie szerokiej publiczności światem nauki?

Nie jestem pewna, czy mamy magiczny środek, ale powiedziałabym, że w zespole ds. komunikacji mamy szczęście zatrudniać świetnego pisarza naukowego z solidnym wykształceniem fizycznym, który jest tak samo podekscytowany ciekawymi odkryciami, jak członkowie zespołów badawczych ICFO i bardzo ciężko pracuje, aby upewnić się, że te pomysły są dobrze przekazywane szerokiemu gronu odbiorców. Dobrze jest mieć w zespole kogoś, kto „mówi językiem” nauki. Coraz więcej pracujemy z multimediami i upewniamy się, że posiadamy silną obecność cyfrową, aby nasze wiadomości docierały do docelowych odbiorców. Przyświecają nam również inne cele popularyzacyjne. Mamy niesamowity i proaktywny zespół ds. transferu wiedzy i technologii, który aktywnie wspieramy w dziale komunikacji. Niektórzy członkowie zespołu koncentrują się na działaniach informacyjnych skierowanych do szkół i ogółu społeczeństwa, a inni ściśle współpracują z firmami, aby przenieść osiągnięcia naukowe z laboratorium do przemysłu. Transfer wiedzy i technologii jest częścią głównej misji ICFO jako instytutu.

Jak naukowcy z Państwa instytucji podchodzą do promocji osiągnięć badawczych i co najlepiej sprawdza się w kontekście zachęcania ich do pełnej współpracy z Pani wydziałem?

Nasz dyrektor zawsze dostrzegał wagę komunikowania „high-impact science” – dobrze jest mieć wsparcie z góry, gdy trzeba przekonać bardzo zajętego naukowca do udziału w inicjatywie informacyjnej. Jednak większość badaczy ICFO cieszy się, gdy ich ważne odkrycia znajdują się w centrum uwagi i wie, że jesteśmy tu po to, by pomóc. Jednocześnie konkurencyjne agencje grantowe mają coraz większe wymagania, jeśli chodzi o rozpowszechnianie wyników projektów. Nawet najbardziej małomówny naukowiec rozumie, że ogół społeczeństwa finansuje naukę i powinien wiedzieć, na co przeznaczane są pieniądze z podatków.

Co według Pani składa się na pięć kluczowych elementów sukcesu w popularyzacji nauki?

a. Świetny materiał wyjściowy (fajna nauka).
b. Naukowcy, którzy umieją w prosty sposób wytłumaczyć swoje badania.
c. Prezentowanie nauki w różnorodnych formatach (filmy, infografiki, zdjęcia, insta-stories), aby dostarczyć społeczeństwu „łatwych” sposobów przyswajania i rozumienia nauki.
d. Znalezienie właściwych partnerów – na rynku są dziennikarze wykonujący wspaniałą pracę i influencerzy mediów społecznościowych, którzy chętnie angażują się w nowe pomysły. Te relacje są ważne.
e. Kreatywne jednostki „outreach”, które współpracują z nauczycielami i szkołami, aby przedstawić skomplikowane tematy młodym umysłom.

Jakie jest Pani największe marzenie jako dyrektora działu komunikacji korporacyjnej ICFO, jaki wpływ chciałaby Pani osiągnąć w społeczeństwie?

Moim marzeniem jest, aby każdy mieszkaniec Barcelony był tak samo dumny z nauki produkowanej w jego mieście, jak z piłki nożnej rozgrywanej na Camp Nou.

W imieniu ICTER bardzo dziękuję za cenne spostrzeżenia, Brook.

Choć nasze instytucje różnią się znacząco pod względem wielkości – w ICFO działa dwadzieścia pięć grup badawczych, podczas gdy w ICTER jest ich pięć – łączy nas zasadnicze podobieństwo: zespoły komunikacyjne obu ośrodków z pasją przekazują informacje o przełomowych badaniach i odkryciach naukowych w taki sposób, aby każdy mógł zrozumieć ich znaczenie, istotę i wpływ na poprawę zdrowia, postęp wiedzy i rozwój ludzkości.

Brook Hardwick. Fotograf: ICFO| Vanessa Montero.

Wywiad poprowadziła dr Anna Przybyło-Józefowicz, Menedżer ds. Komunikacji i PR-u ICTER.

28.07.2022

„Prometeusze przyszłości” – wywiad opublikowany w magazynie Poland Weekly

W dniu 28 lipca 2022 roku w magazynie anglojęzycznym Poland Weekly ukazał się artykuł „Prometeusze przyszłości. Jak międzynarodowy zespół naukowców z siedzibą w Polsce toczy globalną bitwę o nasze oczy.” W materiale przedstawiono serię wywiadów z Principal Investigators kierującymi naszymi pięcioma grupami badawczymi. Opowiadają oni o swoich osiągnięciach badawczych, długoterminowych celach, wyzwaniach naukowych, marzeniach i swojej koncepcji wzroku.

Przeczytaj artykuł na stronie Poland Weekly.

19.07.2022

Jak zahamować śmierć fotoreceptorów? Nowy sposób walki z retinopatią barwnikową

Dlaczego fotoreceptory w siatkówce umierają? Czy proces ten można zahamować? Badania przeprowadzone przez międzynarodowy zespół naukowców, z udziałem dr Andrzeja Foika z ICTER, mogą pomóc opracować terapie spowalniającą utratę wzroku.

Zwyrodnienia siatkówki to szerokie pojęcie i są one jedną z głównych przyczyn ślepoty na świecie – niektóre mają podłoże genetyczne. Mutacje powodujące śmierć fotoreceptorów są dobrze znane, ale patofizjologii w obrębie siatkówki i na drodze wzrokowej do tej pory nie udawało się rozszyfrować we wczesnych stadiach choroby.

W pracy „Visual System Hyperexcitability and Compromised V1 Receptive Field Properties in Early-Stage Retinitis Pigmentosa in Mice” opublikowanej w eNeuro naukowcy przyjrzeli się funkcjom wzrokowym siatkówki, śródmózgowia i kory wzrokowej. Autorami pracy są: Henri Leinonen, David C. Lyon, Krzysztof Palczewski i Andrzej Foik z ICTER. Badania te mają ogromną wagę, bo mogą doprowadzić do opracowania nowych metod diagnostycznych chorób oczu powodujących ślepotę.

„Stwierdziliśmy, że układ wzrokowy adaptuje się do utraty fotorecepcji poprzez zwiększenie czułości, ale jednocześnie staje się szkodliwie nadpobudliwy. Zrozumienie tego mechanizmu może doprowadzić do terapeutycznej ochrony i przywrócenia widzenia” – mówi dr Andrzej Foik z ICTER.

Skąd się biorą zwyrodnienia siatkówki?

Zwyrodnienia siatkówki to szereg chorób oczu, którym towarzyszy degradacja siatkówki (utrata funkcji fotoreceptorów). Najczęstszymi postaciami zwyrodnień siatkówki jest zwyrodnienie plamki żółtej (AMD; Age-Related macular Degeneration) i retinopatia barwnikowa (RP; Retinitis Pigmentosa). Stanowią one całkowite przeciwieństwa, bo w przypadku AMD dochodzi do utraty widzenia centralnego, a podczas retinopatii barwnikowej chory przestaje widzieć obwodowo.

Siatkówka jest światłoczułą warstwą wyściełającą wnętrze oka, w której znajdują się fotoreceptory (czopki i pręciki), wyłapujące światło i przekształcające ją w impulsy elektryczne, które nerwem wzrokowym są przekazywane do mózgu. Tak widzimy świat. Centralną częścią siatkówki jest plamka żółta, czyli obszar o średnicy ok. 5 mm, w którym znajduje się najwięcej fotoreceptorów – czopków. To właśnie plamka żółta odpowiada za najostrzejsze widzenie.

Zwyrodnienie plamki żółtej (AMD) to choroba, w której dochodzi do postępującego obumierania fotoreceptorów skupionych w plamce żółtej. Skutkuje to pogorszeniem widzenia centralnego oraz zniekształceniem obrazu. AMD jest uznawane za najczęstszą przyczynę nieodwracalnej utraty wzorku po 50. roku życia. Dlatego właśnie bardzo ważne jest jak najwcześniejsze zdiagnozowanie AMD, bo wdrożenie odpowiedniego leczenia daje szanse na zahamowanie postępu choroby.

Z kolei retinopatia barwnikowa (RP) to dziedziczona choroba siatkówki oka, która często wchodzi w skład zespołów genetycznych. Podczas jej rozwoju, w dnie oka pojawiają się skupiska barwnika (początkowo niewielkie), które z czasem zagęszczają się, uniemożliwiając prawidłowe widzenie. Choroba ta jest niezwykle podstępna i wielu doświadczonych okulistów ma problemy z jej prawidłowym zdiagnozowaniem. Chorym na retinopatię barwnikową często pozostaje jedynie widzenie „tunelowe”, czyli ograniczone widzenie centralne, które z czasem się pogarsza. Niestety, nie ma skutecznych sposobów leczenia retinopatii barwnikowej, choć na świecie są testowane eksperymentalne terapie genowe.

Nadpobudliwość drogi wzrokowej

W pracy „Visual System Hyperexcitability and Compromised V1 Receptive Field Properties in Early-Stage Retinitis Pigmentosa in Mice” międzynarodowemu zespołowi uczonych udało się podejrzeć procesy zachodzące we wczesnym stadium retinopatii barwnikowej. Naukowcy wykorzystali różne techniki diagnostyczne – elektroretinografię (ERG), pomiar odpowiedzi optomotorycznej (OMR), wywołane potencjały wzrokowe (VEP) oraz elektrofizjologię pojedynczych neuronów w pierwotnej korze wzrokowej (V1) u myszy RhoP23H/WT, będących zwierzęcym modelem retinopatii barwnikowej.

Gryzonie podzielono na dwie grupy: młode (miesięczne) i dorosłe (trzymiesięczne). Odnotowano zauważalną nadwrażliwość na światło (30% wyższe wartości ERG) i nadpobudliwość wzrokową w korze nowej u wszystkich myszy RhoP23H/WT – efekt był jednak bardziej widoczny w przypadku zwierząt młodych.

„Nasze dane sugerują, że we wczesnym okresie RP droga wzrokowa ulega nadpobudliwości. Może to mieć zarówno kompensacyjne, jak i szkodliwe konsekwencje dla zachowania wzrokowego. Dalsze badania nad mechanizmami nadpobudliwości są uzasadnione, ponieważ mogą one prowadzić do interwencji terapeutycznych w RP” – dodaje dr Andrzej Foik z ICTER.

Pełne zrozumienie retinopatii barwnikowej daje większe szanse na zahamowanie postępu choroby. Wcześniejsze badania wykazały, że bardzo duże dobowe dawki witaminy A (15 000 IU/d) mogą spowolnić postęp RP o około 2% rocznie, ale taką interwencję trzeba dobrze przemyśleć, bo witamina A nie jest obojętna dla naszej wątroby. Dzięki badaniom, w których brał udział dr Andrzej Foik, w przyszłości możliwe będzie określenie, kto jest w grupie ryzyka RP, zanim choroba zacznie się jeszcze ujawniać.

Autor notki prasowej: Marcin Powęska

Zdjęcia: dr Karol Karnowski

Publikacja:

Henri Leinonen, David C. Lyon, Krzysztof Palczewski, Andrzej T. Foik
Visual System Hyperexcitability and Compromised V1 Receptive Field Properties in Early-Stage Retinitis Pigmentosa in Mice, eNeuro 14 June 2022, 9 (3) ENEURO.0107-22.2022; DOI:
https://doi.org/10.1523/ENEURO.0107-22.2022