23.11.2022

Oczy dobrze ubrane. O najnowszych modowych trendach w optyce okularowej rozmawiamy z właścicielem salonu optycznego Studio Optyk, Jarosławem Bugajem

Współcześnie okulary są wytworem łączącym w sobie tak różne dziedziny wiedzy i aktywności ludzkiej jak inżynieria materiałowa, zaawansowane technologie cyfrowe, okulistyka i wiedza optyczna, precyzyjne rzemiosło, wzornictwo przemysłowe i design, a nawet marketing marek luksusowych. I w takim ujęciu doskonale wpisują się w translacyjny charakter centrum badań nad okiem, jakim jest ICTER. Dlatego dziś chcielibyśmy Państwu przybliżyć temat okularów i mody na okulary z perspektywy osoby, dla której ich produkcja, indywidulany dobór oraz naprawa są osobistą pasją i zawodowym wyzwaniem.

Czy prawdą jest, że każdy z nas w ciągu życia będzie potrzebować przynajmniej pary okularów?

– Tak, to prawda. To jest nieuniknione. Prędzej czy później, nawet jeśli nie mieliśmy do czynienia z okularami, to w którymś momencie naszego życia zaczyna się młoda prezbiopia, czyli utrata elastyczności soczewki wewnątrzgałkowej. Nagle okazuje się, że ręka jest już za krótka, by zapewnić odległość właściwą do odczytywania drobnego druku. Wtedy przychodzi czas na wizytę u okulisty, pomiar refrakcji, no i sprawdzanie, jak bardzo naturalna soczewka przestaje być wydolna.

– Czyli poprawiamy sobie korekcję dobierając soczewki. Ale przecież zależy nam, by ładnie i modnie wyglądać, niezależnie od płci i wieku.

– Tak, i wtedy, oprócz doboru soczewek, czeka nas wybór oprawy okularowej, co nie jest takie proste, jakby się nam wydawało. Trzeba zwracać uwagę na mnóstwo czynników, a przede wszystkim trzeba się sobie podobać i dobrze czuć w takiej oprawie. Często też zależy nam, by dostosować ją do obecnych trendów. Kiedyś do okularów nie przykładano takiej wagi, traktowane były jako zło konieczne, muszę je nosić, bo bez okularów nie widzę lub słabo widzę. Dziś zależy nam również na tym, by w nich dobrze wyglądać i mieć coś fajnego na twarzy, liczy się też komfort użytkowania i jakość wykonania. Można powiedzieć, że w optyce okularowej występują takie fale np. że była moda na oprawy drucikowe, później przyszła moda na oprawy z masy (plastik), wyraziste, a ostatnio transparentne, a teraz to się już troszeczkę pomieszało. Do tego każdy z nas ma indywidulane preferencje. Są osoby, które wolą mocne oprawy, które są wyraźnie zauważalne na twarzy i będą zaznaczały ich charakter, a są osoby, które wolą oprawy delikatniejsze, bardziej subtelne. Ważne, by było stylowo, komfortowo, aby pacjent dobrze się czuł w tych okularach, bo jakby nie było, jest to proteza naszego wzroku.

– Kto wyznacza trendy w modzie na oprawki?

Obecnie są to przede wszystkim główne domy mody, które za pośrednictwem swoich największych, często ekskluzywnych i najbardziej rozpoznawalnych marek kreują trendy w modzie dla pań i panów. W niemal każdej kolekcji sezonowej, okulary – głównie te przeciwsłoneczne, ale również oprawy korekcyjne – są integralnym elementem projektów prezentowanych na wybiegu.  Trendy obecnie wyznaczają też celebryci oraz influencerzy. Osoby znane często pokazują się w okularach, zwłaszcza przeciwsłonecznych, noszą coraz ciekawsze modele, także te z wybiegów mody, wzbudzając tym zainteresowanie przynajmniej części społeczeństwa. Często zdarzają się nam pacjenci, którzy proszą o oprawy jakie nosi konkretny celebryta. To jest ciekawe o tyle, że na każdą twarz przypada trochę inna oprawa. Ta, w której Pan Krzysztof wygląda elegancko i szykownie, niekoniecznie zadowoli Pana Karola, który dodatkowo może nie odczuć w ogóle komfortu noszenia takich oprawek. Na to też trzeba zwrócić szczególną uwagę przy doborze okularów.

– Czyli modę okularową kształtuje głównie dyktat domów mody. Ale są też inne trendy, które mogą wpływać na to, jak się nosimy i co nosimy na co dzień. Silnym trendem obecnie jest wszystko, co związane jest z ekologią i zrównoważonym rozwojem. Jak wygląda ten trend w oprawkach?

– Coraz więcej producentów wykorzystuje do produkcji opraw surowce wtórne. Współpracujemy z firmą, która wytwarza oprawy z surowców pozyskanych z recyclingu śmieci oceanicznych. W oprawach pojawia się coraz więcej domieszek drewna i innych materiałów naturalnych, które na początku były słabo wykorzystywane z uwagi na swoją kruchość i łamliwość. Obecnie wzbogacane są o specjalne płytki akcelatowe, które sprawiają, że oprawa robi się bardziej elastyczna i można jej dłużej używać.

– Skoro mowa o materiałach, to jakie inne materiały poza wymienionymi używane są do tworzenia opraw?

– Oczywiście plastik, który współcześnie charakteryzuje się olbrzymią wytrzymałością i lekkością. Zazwyczaj są to grube oprawy, choć lekkie, a także dość miękkie i z tego względu polecane zwłaszcza dla dzieci. W tym celu wykorzystuje się zylonit, czyli octan celulozy – hipoalergiczne tworzywo sztuczne, a także żywicę epoksydową, która po podgrzaniu jest bardzo plastyczna i łatwo dopasowuje się do kształtu twarzy.  W produkcji opraw wykorzystywane są również metale, jak stal chirurgiczna, aluminium, tytan czy beryl. Wszystko zależy od preferencji klienta i zasobności portfela, gdyż niektóre oprawy, jak na przykład tytanowe, mogą być dość drogie.

– A czy można dać drugie życie swoim oprawkom?

– Tak, istnieją firmy i fundacje, także w Polsce, które zajmują się zbieraniem zużytych lub nieużywanych opraw okularowych od optyków. W zasadzie zawsze mam w salonie oprawy, których nie wykorzystam, także na części zamienne przy naprawie okularów moich klientów. Od czasu do czasu pakujemy je i wysyłamy w miejsce, gdzie oprawy są odnawiane. Następnie grupa okulistów i/lub optometrystów jedzie do krajów trzecich i z tych zebranych opraw wykonuje ludziom na miejscu okulary, tak by móc je ponownie wykorzystać, by ktoś się tym cieszył. Chodzimy w oprawie kilka lat i ona nie zużywa się całkowicie, po kilku zabiegach można ją odświeżyć. To są także przydatne materiały szkoleniowe dla szkół kształcących optyków okularowych i optometrystów, a ta dziedzina kształcenia od co najmniej 10 lat bardzo prężnie się w Polsce rozwija.

– Czy możesz opowiedzieć o swojej przygodzie z optyką? 

– Mój salon to firma rodzinna. Firmę rozwijał mój tata i uczył mnie rzemiosła od dziecka. Nie wyobrażam sobie, że mógłbym robić nic innego. Fascynują mnie okulary, technologie optyczne, dobór oprawek, jak skonstruowana jest gałka oczna, jak obraz tworzy się na siatkówce. Moim marzeniem jest w przyszłości zająć się optometrią. Obecny kierunek rozwoju optometrii w Polsce pomaga lekarzom skupić się na leczeniu chorób oczu, nie tylko na doborze korekcji wady wzroku. Tym bardziej, że technologie są coraz bardziej zaawansowane, konstrukcje samych soczewek okularowych zmieniają się w zasadzie z roku na rok, a lekarz okulista niekoniecznie jest świadomy tych zmian konstrukcyjnych. Lekarz skupia się na chorobach, końcowa korekcja wady wzorku pozostaje na poziomie optyka. Dobierając okulary i oprawki wolę sprawdzić receptę, którą dostaję od klienta, zwłaszcza jeśli dotyczy soczewek progresywnych czy relaksacyjnych, gdzie występują kanały progresji czy strefy aberracyjne. Nie są to duże różnice między główną receptą a moją poprawką, często jest to 0,5 dioptrii bądź nieznacznie zmieniona oś cylindra, ale jesteśmy w stanie tak doprecyzować to badanie wstępne, aby wycisnąć jak najwięcej z soczewki. Współcześnie soczewki są bardziej precyzyjne i wymagają od optyków większej precyzji pomiarowej. Wykonuje się je z wykorzystaniem technologii cyfrowych, gdzie każda 0,1 mm w wysokości montażowej bądź rozstawie źrenic czy w dopasowaniu kanału progresji ma ogromne znaczenie dla pacjenta, jego adaptacji do nowych okularów i komfortu ich użytkowania.

– Rozmawiając o technologii, czy możesz proszę powiedzieć czy rozszerzona rzeczywistość wykorzystywana jest np. przy doborze oprawek. Czy to się dzieje?

– Tak, są firmy optyczne, które z tym eksperymentują. Pacjent staje wówczas przed urządzeniem, komputer wykonuje skan twarzy, następnie na podstawie algorytmu wylicza, jaka oprawa będzie optymalna do danej twarzy i drukuje ją w 3D. Jak to działa w praktyce, jeszcze tego nie widziałem, ale ciekawy jestem czy dobór ten – będący w zasadzie czystą matematyką – sprawdzi się w praktyce. Wszak każda twarz jest inna, komputer oczywiście może robić bardzo dokładne skany, ale czy to akurat wyliczenie będzie dobre dla danego pacjenta, to może być zawsze kwestia sporna, bo wchodzą tutaj kwestie subiektywne, własnej oceny, czego maszyna nie jest w stanie ocenić. Oczywiście, można napisać program, w którym pacjent będzie mógł wprowadzić swoje preferencje dotyczące takiej oprawy, ale nie ma żadnej pewności czy wynik końcowy będzie go satysfakcjonował. To już w niektórych miejscach działa, ale nadal nie ma zastosowania komercyjnego na szeroką skalę.

– Teraz często chcemy mieć kilka opraw, zwłaszcza kiedy mamy wadę wzroku i nie chcemy bądź nie możemy stosować soczewek kontaktowych. Traktujemy je trochę jak perfumy czy zegarek– mam dziś taką stylizację i w związku z tym mam chęć na taką, a nie inną oprawę.

– Dokładnie, ja mam tak z okularami przeciwsłonecznymi. Mam ich całe mnóstwo i żadnych nie mogę się pozbyć, bo wszystkie lubię. Okulary są dzisiaj integralną częścią naszego wizerunku, niezależnie czy mamy wadę wzroku czy nie.

– Skoro jesteśmy przy temacie okularów funkcjonalnych, to jakie są inne typy okularów są jeszcze stosowane w różnych obszarach życia?

–  Są na przykład okulary sportowe, których soczewki są dedykowane dla golfistów, bilardowców, biegaczy itp., którzy z różnych względów nie mogą skorzystać z soczewek kontaktowych. Często są to specjalne soczewki, zwłaszcza progresywne, stworzone z myślą, by przy uprawianiu konkretnych sportów zapewnić optymalny komfort funkcjonowania.  Na przykład dla kolaży, którzy potrzebują mieć pełne spektrum widzenia. Są też okulary ochronne dla osób pracujących w trudnych warunkach – spawaczy, tokarzy – w nich też istnieje możliwość korekcji. Ciekawym przykładem są okulary balistyczne, przeznaczone głównie dla zaawansowanych strzelców po 40 r. życia, którzy napotykają na problem właściwy dla wszystkich prezbiopów, chcąc widzieć muszkę i cel jak za starych dobrych lat, jednak wada wzroku już na to nie pozwala. I tutaj też okulary dedykowane mają swoje zastosowanie.

– Skąd pozyskujesz oprawki? Jakie są wiodące kraje w produkcji oprawek i jak na tym tle plasuje się Polska?

– Polska wypada całkiem nieźle, mamy coraz więcej rodzimych producentów opraw okularowych i jakość tych opraw nie odbiega od ich zagranicznych konkurentów. Oprawy są naprawdę dobrze wykonane, do ich produkcji wykorzystane są wysokiej jakości materiały, a pod względem ceny są one zdecydowanie bardziej przyjazne niż zagraniczne. W swoim salonie mam również bogatą ofertę opraw z Włoch i Francji, gdyż uwielbiam je za design i często ręczne wykonanie, są doskonale wyprofilowane i zapewniają wysoką jakość noszenia. Cenię też oprawy z Hiszpanii, które eksplodują kolorami i odważną, nowoczesną stylistyką, a do tego są bardzo lekkie i przyjemne w użytkowaniu. Polskie oprawy są świetnie wykonane, ale sam design jeszcze wymaga pracy, w tym zakresie często czerpiemy inspirację od producentów zagranicznych.

– Jak widzisz przyszłość branży oprawkowej?

– Od momentu, od kiedy jestem w optyce okularowej, czyli od ponad 20 lat, branża przeszła prawdziwą rewolucję. Zmiany dzieją się na naszych oczach, a wyznacza je lifestyle, gdyż wraz ze zmianami stylu życia zmieniają się potrzeby klientów. Stąd też niesamowita popularność okularów przeciwsłonecznych, które oprócz swej funkcji ochronnej są właściwie akcesorium modowym, nowe pomysły producentów opraw na kształty, nakładki, efektowne zauszniki – wszystko to co pozwala wyróżnić się z tłumu, podkreślić indywidualność i często też status materialny. Jeśli chodzi o design, to wiele modeli opraw powraca. Można powiedzieć, że każdy rodzaj oprawy będzie mieć swój czas, co prawda w nowej odsłonie. Również technologia materiałowa pozwala w designie na nieporównywalnie więcej niż dawniej.

W szerszym ujęciu zmiany w branży podyktowane są też intensywną cyfryzacją całego sektora optycznego. Dziś niektóre salony oferują konsultacje na odległość za pośrednictwem Internetu, prowadząc wysyłkową sprzedaż okularów i częściowo zdalny dobór opraw. Wówczas klient w domu może wypróbować kilka wstępnie wybranych opraw i spokojnie zdecydować się na swój model. Osobiście uważam, że w dłuższej perspektywie nie zastąpi to jednak osobistej konsultacji z optykiem z uwagi na konieczność dokonania dodatkowych pomiarów w salonie i indywidualnego dopasowania opraw do twarzy pod względem funkcjonalnym, nie tylko estetycznym.

Do salonów wkracza też nowoczesne oprogramowanie na gruncie usług optycznych, w tym biometria oraz technologie VR, które pozwalają pozyskać obszerną ilość danych niezbędnych do wykonania zindywidualizowanych soczewek optymalnie dopasowanych do potrzeb danego pacjenta. Takie oprogramowanie tworzone jest również w Polsce. Współpracujemy w tym zakresie z firmą Szajna z Gdyni, która jest producentem soczewek progresywnych i oferuje urządzenie diagnostyczne VR, pozwalające śledzić zachowanie oka w czasie rzeczywistym przy różnej akomodacji i warunkach widzenia. Pozyskane w ten sposób dane dostarczają dodatkowych informacji o zachowaniu oka pacjenta w różnych warunkach i umożliwiają optymalny dobór soczewek progresywnych.

Przyszłość dzieje się już dziś, a sama branża optyczna ma duży potencjał wzrostu, także z uwagi na stale rosnącą liczbę osób wymagających korekcji wzroku na różnych etapach życia. Z ciekawością i uwagą śledzę najnowsze okularowe trendy, by móc zapewnić moim klientom wysokiej jakości produkt, w pełni satysfakcjonujący pod względem medycznym, funkcjonalnym i estetycznym. 

Bardzo dziękuję za spotkanie i życzę powodzenia w dalszym rozwoju działalności!

Wywiad z Jarosławem Bugajem, właścicielem Salonu Optycznego Studio Optyk w podwarszawskim Wołominie przeprowadziła Joanna Kartasiewicz, Research Funding Manager.

Specjalne podziękowania dla firmy Szajna za możliwość przetestowania ich urządzenia diagnostycznego wykorzystującego technologię VR.

26.10.2022

Jak ulepszyć mikroendoskopy? Nowa konstrukcja budzi nadzieje na poprawę obrazowania biomedycznego – artykuł w IEEE Photonics Journal autorstwa dr Karola Karnowskiego   

Mikroendoskopy to podstawa nowoczesnej diagnostyki medycznej – pozwalają dostrzec to, czego jeszcze dwie dekady temu nie potrafiliśmy nawet opisać. Technologia ta jest ciągle ulepszana, a do rozwoju sond przyczyniają się naukowcy z ICTER.

Mikroendoskopy wykorzystujące światłowody stają się coraz ważniejszymi narzędziami do obrazowania, ale mają swoje ograniczenia fizyczne. Są one szczególnie istotne w przypadku zastosowań wymagających dużej odległości roboczej, wysokiej rozdzielczości i/lub minimalnej średnicy sondy. Praca badawcza, zatytułowana Superior imaging performance of all-fiber, two- focusing-element microendoscopes, autorstwa dr Karola Karnowskiego z ICTER, dr Gavrielle Untracht z Technical University of Denmark (DTU), dr Michaela Hackmanna z University of Western Australia (UWA), Onura Cetinkayi z ICTER i prof. Davida Sampsona z University of Surrey, rzuca nowe światło na nowoczesne mikroendoskopy. Warto podkreślić, że prace badawcze zostały rozpoczęte w czasie, gdy autorzy pracowali w jednej grupie badawczej na UWA.

Naukowcy pokazali w niej, że endoskopowe sondy obrazujące, w szczególności te do tzw. obrazowania bocznego, łączące soczewki światłowodowe (GRIN) z soczewkami kulistymi, oferują doskonałe parametry pracy w całym zakresie apertur numerycznych i otwierają drogę do szerszego zakresu zastosowań obrazowania. W publikacji wydajność endoskopowych sond obrazujących jest porównywalna z powszechnie stosowanymi sondami z pojedynczymi elementami ogniskującymi.

Zdjęcie: Karol Karnowski

Czym są mikroendoskopy?

Miniaturowe sondy światłowodowe, czyli mikroendoskopy, umożliwiają obrazowanie mikrostruktur tkankowych w głębi próbki lub pacjenta. Szczególnie obiecująca jest endoskopowa tomografia optyczna OCT (Optical Coherence Tomography), która nadaje się do obrazowania objętościowego zarówno do tkanek zewnętrznych, jak i wnętrza organów (np. górnych dróg oddechowych, przewodu pokarmowego, czy kanalików w płucach).

Można wyróżnić trzy główne zakresy pracy sond światłowodowych. Badania dużych, pustych narządów (np. jak wspomniane górne drogi oddechowe) wymagają największych zakresów głębokości obrazowania (do 15 mm lub więcej od powierzchni sondy), które zwykle można osiągnąć dzięki wiązkom gaussowskim o niskiej rozdzielczości (rozmiar plamki w ognisku w zakresie 30-100 μm). Pośredni zakres rozdzielczości (10-30 μm) przydaje się do szerszego zakresu zastosowań, np. obrazowania przełyku, mniejszych dróg oddechowych, naczyń krwionośnych, pęcherza moczowego, jajników czy przewodu słuchowego. Największym wyzwaniem jest uzyskanie wiązek o rozdzielczości lepszej niż 10 μm, które są potencjalnie użyteczne w badaniach z użyciem modelach zwierzęcych.

Zdjęcie: Karol Karnowski

Przy tworzeniu sondy, trzeba pamiętać, by zachować kompromis między parametrami konstrukcyjnymi a ich wpływem na wydajność obrazowania. Układy optyczne o dużej aperturze numerycznej (wysokiej rozdzielczości) mają zwykle krótszą odległość roboczą (WD). Ponadto lepsza rozdzielczość i większa odległość robocza są trudniejsze do osiągnięcia w miarę zmniejszania średnicy sondy. Może to być szczególnie problematyczne w przypadku sond do obserwacji bocznej – w porównaniu z ich odpowiednikami obrazującymi w przód, wymagana jest większa minimalna odległość robocza. Jeżeli sonda jest zamknięta w cewniku lub igle, powoduje to wydłużenie wymaganej minimalnej odległości roboczej – w wielu przypadkach to właśnie ona jest czynnikiem ograniczającym w odniesieniu do minimalnej osiągalnej rozdzielczości lub średnicy sondy.

Warto podkreślić, że inżynierom zazwyczaj zależy na minimalizacji średnicy sondy ze względu na zmniejszenie perturbacji dla próbki i/lub komfort pacjenta. Mniejsza sonda to bardziej elastyczny cewnik, a więc i lepsza tolerancja badania przez pacjenta. Dlatego jednym z najlepszych rozwiązań jest stosowanie monolitycznych sond światłowodowych, których średnica jest ograniczona przez grubość włókien optycznych. Sondy takie charakteryzują się łatwością wytwarzania, dzięki technologii spawania światłowodów, co pozwala uniknąć konieczności żmudnego ustawiania i łączenie (zazwyczaj klejenia) poszczególnych elementów mikrooptycznych.

Zdjęcie: Karol Karnowski

Różne rodzaje mikroendoskopów

Najpopularniejsze konstrukcje światłowodowych sond obrazujących to te oparte na dwóch typach elementów ogniskujących: sondy z włóknami GRIN (GFP – GRIN fiber probes) oraz sondy z soczewkami kulistymi (BLP – ball lens probes). Sondy GRIN są łatwe do wykonania, a ich moc refrakcyjna GRIN nie jest tracona, gdy współczynnik załamania otaczającego ośrodka jest zbliżony się do współczynnika załamania użytego światłowodu. Możliwe do osiągnięcia konstrukcje są ograniczone przez komercyjnie dostępne włókna GRIN. Szczególnie trudne jest uzyskanie wysokiej rozdzielczości w przypadku włókien GRIN o małej średnicy rdzenia.

W przypadku sond do obserwacji bocznej, zakrzywiona powierzchnia włókna (i potencjalnie cewnika) wprowadza zniekształcenia, które mogą mieć negatywny wpływ na jakość obrazowania. Sferyczne sondy typu BLP nie będą miały tego problemu, ale rozmiar kuli większy niż średnica włókna jest często wymagany do osiągnięcia rozdzielczości porównywalnej z sondami GFP. Siła skupiająca sondy BLP zależy od współczynnika załamania światła otaczającego ośrodka, co jest ważną kwestią podczas pracy w ośrodku o zbliżonym  lub w bliskim kontakcie z próbkami biologicznymi.

Jednym z rozwiązań do polepszenia parametrów sond, jest zastosowanie wielu elementów skupiających światło, podobnie jak w przypadku konstrukcji obiektywów o dużej odległości roboczej. Badania wykazały, że połączenie wielu elementów skupiających światło zapewnia lepsze wyniki dla wielu celów obrazowania. Sondy z wieloma elementami ogniskującymi mogą osiągnąć lepszą rozdzielczość przy mniejszej średnicy, jednocześnie oferować większe odległości robocze bez poświęcania rozdzielczości.

Jak ulepszyć sondy?

W swojej najnowszej pracy, naukowcy z dr Karnowskim na czele wykazali, że sondy z dwoma elementami ogniskującymi, w których zastosowano zarówno segmenty GRIN, jak i soczewki kuliste – nazywane sondami GRIN-ball-lens probes (GBLP) – znacznie zwiększają wydajność monolitycznych sond światłowodowych. Ich pierwsze wyniki z modelowania pokazywano już na konferencjach w 2018 i 2019 roku. Sondy GBLP porównano z najczęściej używanymi sondami GFP oraz BLP i wykazano korzyści w zakresie wydajności, szczególnie w przypadku zastosowań wymagających większych odległości roboczych, lepszej rozdzielczości i/lub małych rozmiarów.

Dla intuicyjnej wizualizacji parametrów pracy sondy, naukowcy wprowadzili nowatorski sposób kompleksowej prezentacji wyników symulacji, szczególnie przydatny w przypadku, gdy w symulacji wykorzystywane są więcej niż dwie zmienne. Analiza wpływu długości włókna GRIN i rozmiaru soczewki kulistej doprowadziła do dwóch interesujących wniosków:  dla optymalnych wyników zakres długości włókna GRIN może być utrzymana w zakresie 0,25-0,4 długości skoku (tzw. pitch length); nawet jeśli zysk odległości roboczej (WD) nie jest tak znaczący dla sond GBLP o wysokiej aperturze numerycznej, autorzy pokazali, że taka sama lub lepsze wydajność w zakresie odległości roboczej jest osiągana dla sondy ze dwukrotnie mniejszą średnicą. Co więcej, nowatorskie sondy GBLP oferują wyższe rozdzielczość w porównaniu do sond BLP.

Zdjęcie: Bartłomiej Bałamut

W podsumowaniu pracy czytamy:

Zademonstrowaliśmy potencjał konstrukcji sond GBLP dla zastosowań o zwiększonej odległości roboczej, szczególnie ważnych dla sond z obrazowaniem bocznym, z wysoce zredukowanym wpływem współczynnika załamania środowiska, w którym pracuje sonda i znacznie mniejszym rozmiarem  w porównaniu z sondami BLP lub GFP. Te zalety czynią sondy GBLP narzędziem wartym rozważenia w wielu zastosowaniach do obrazowania w badaniach biologicznych i biomedycznych, w szczególności w projektach wymagających mikroendoskopów.

Autor notki prasowej: Marcin Powęska

Uwaga: Pierwsze wyniki z modelowania „GRIN-ball-lens probes (GBLP)” zostały już zaprezentowane na konferencjach w 2018 i 2019 roku:

– Karol Karnowski, Gavrielle R. Untracht, Michael J. Hackmann, Mingze Yang, Onur Cetinkaya, David D. Sampson, „Versatile, all-fiber, side viewing imaging probe for applications in catheter-based optical coherence tomography”, Photonics West, San Francisco, USA, Feb 2019, prezentacja ustna;

– K. Karnowski, G. Untracht, M. Hackmann, M. Yang, O. Cetinkaya, and D. D. Sampson, „Versatile, monolithic imaging probes for catheter-based OCT,” 15th Conference on Optics Within Life Sciences, Rottnest Island, Australia, Nov. 2018, prezentacja plakatowa.

Zespół odpowiedzialny za te wyniki rozpoczął pracę na University of Western Australia (UWA), a obecnie prace zostały zakończone w ramach następujących instytucji: Instytut Chemii Fizycznej, Polska Akademia Nauk oraz University of Surrey, przy czym tylko jeden z autorów pozostał na UWA.

Zdjęcia: dr Karol Karnowski i mgr inż. Bartłomiej A. Bałamut

Komentarz fotografów: Jednym z kluczowych elementów opracowanych sond jest powierzchnia sferyczna powierzchnia wytworzona na końcówce włókna światłowodowego. Na zdjęciach wykorzystaliśmy możliwości obrazowania takich elementów sferycznych (szklana kula).

Cytowana publikacja: K. Karnowski, G. Untracht, M. Hackmann, O. Cetinkaya and D. Sampson, „Superior Imaging Performance of All-Fiber, Two-Focusing-Element Microendoscopes,” in IEEE Photonics Journal, vol. 14, no. 5, pp. 1-10, Oct. 2022, Art no. 7152210, doi: 10.1109/JPHOT.2022.3203219.

Photo: Karol Karnowski

Źródła finansowania:

  • Narodowa Agencja Wymiany Akademickiej (NAWA) w ramach programu Polskie Powroty
  • University of Western Australia IPRS 
  • Rank Prize Covid Fund
  • Australian Research Council 
  • University of Surrey
DOI Number:
14.10.2022

Zafascynowany okiem: Prof. Marco Ruggeri przekłada potrzeby kliniczne na badania, nowe technologie okulistyczne i patenty

Dnia 23 września 2022 r. nasz ośrodek odwiedził prof. Marco Ruggeri z Bascom Palmer Eye Institute. Obszar jego specjalizacji obejmuje instrumentarium i technologie obrazowania ilościowego do zastosowań diagnostycznych i chirurgicznych w okulistyce. Mając podpisany list intencyjny z Bascom Palmer Eye Institute, omówiliśmy potencjalną współpracę szukając wspólnych projektów do realizacji, szczególnie w zakresie procedur okulistycznych. Nasi naukowcy dr Andrea Curatolo, dr Karol Karnowski, dr Sławomir Tomczewski i mgr Marcin Marzejon oprowadzili prof. Ruggeriego po laboratoriach i omówili aktualne badania. Prof. Wojtkowski spotkał się również z gościem, aby porozmawiać o przyszłych projektach. Podczas wizyty prof. Ruggeri udzielił wywiadu naszemu działowi komunikacji i PR na temat popularyzacji i rozpowszechniania nauki w Stanach Zjednoczonych oraz podzielił się swoim stanowiskiem dotyczącym promowania badań i docierania do jak najszerszego grona odbiorców z wiedzą ekspercką w dziedzinie zdrowia oczu i nowych technologii okulistycznych.

Wywiad z prof. Marco Ruggeri

Proszę powiedzieć, jak Pana specjalizacja przekłada się na poprawę stanu wiedzy specjalistycznej i doskonałości w badaniach nad wzrokiem.

Pracuję w obrębie kilku nisz. Po pierwsze, chcemy poprawić widzenie w starszym wieku, aby ludzie mogli zachować jakość widzenia w późniejszym okresie życia. W pierwszej kolejności staramy się zrozumieć, dlaczego z wiekiem tracimy zdolność do skupiania wzroku na przedmiotach znajdujących się blisko, co jest stanem znanym jako prezbiopia. W tym celu badamy mechanikę akomodacji, która jest systemem automatycznego ustawiania ostrości ludzkiego oka. Jest to kluczowa część procesu, ponieważ jeśli nie wiemy, jak działa, nie będziemy w stanie go naprawić. Musimy dowiedzieć się, dlaczego tracimy tę zdolność z wiekiem, abyśmy mogli temu przeciwdziałać. Ponieważ moją specjalnością jest optyka i obrazowanie, sposób w jaki to robię polega na wizualizacji i analizie za pomocą naszej technologii obrazowania tego, co dzieje się wewnątrz oka w prawdziwym życiu, kiedy patrzymy na bliskie obiekty i jak to się zmienia z wiekiem. Używamy tej technologii również do oceny skuteczności istniejących procedur korygowania tego stanu, co jest ważne, ponieważ dostarcza informacji zwrotnej producentom, aby mogli poprawić swoje produkty.

Pracuję również nad technologią obrazowania służącą do wczesnego wykrywania chorób oczu, takich jak na przykład keratoconus. Jest to istotne, ponieważ dzięki naszej technologii klinicyści będą mogli działać wcześnie i zarządzać chorobą na czas, aby maksymalnie zachować wzrok u pacjentów. Ale to nie wszystko, ponieważ narzędzia, które opracowujemy, zapewniają również klinicystom sposób na zrozumienie, czy obecne terapie, które stosują, są skuteczne, czy też nie, co poprawia zarządzanie chorobą.
Naszym celem, jako badaczy zajmujących się badaniami translacyjnymi, jest szybsze i skuteczniejsze wprowadzanie odkryć i technologii z zakresu nauk podstawowych do praktyki. Nasze centrum badań nad widzeniem jest do tego idealnym miejscem, ponieważ znajdujemy się dosłownie po drugiej stronie ulicy od szpitala Bascom Palmer Eye Institute, który jest jednym z największych w USA. Nasze podejście polega na rozmowie z klinicystami i określeniu, jakie są rzeczywiste potrzeby kliniczne, a następnie znalezieniu rozwiązania. Pytamy ich, jakie odkrycie naukowe byłoby przełomowe w dziedzinie okulistyki i ułatwiłoby im życie, a na ich opiniach warto się skupić.

Na przykład, nasz instytut organizuje ochody kliniczne (tzw. grand rounds) w każdy czwartek rano, gdzie okuliści konferują na temat złożonych przypadków klinicznych, które omawiają wymieniając różne podejścia do danej choroby lub urazu. To jeden z najlepszych sposobów na zrozumienie, jakie są potrzeby kliniczne. Po prostu idziesz tam, słuchasz, patrzysz na to, co robią, zachowujesz ciszę, robisz notatki, masz pomysły i rozmawiasz z nimi. Robię to od lat i do tej pory znam większość okulistów w moim szpitalu całkiem dobrze. Niektórzy z tych klinicystów w końcu stali się przyjaciółmi. Piszę do nich SMS-y, gdy potrzebuję ich opinii na temat projektu badawczego, a oni piszą do mnie, gdy mają nową potrzebę kliniczną. Zdaję sobie sprawę, że może to nie być konwencjonalny sposób ustalania priorytetów naukowych, ale dla mnie okazał się on niezwykle skuteczny. I ma dodatkową korzyść, jest to doskonała forma rozpowszechniania mojej pracy naukowej. Wysyłam też okulistom moje publikacje, prezentacje mojej pracy naukowej, dzielę się z nimi wiedzą, którą zgłębiam przede wszystkim kierowany oddolną potrzebą kliniczną.

Podsumowując cykl życia mojej pracy, najpierw przyglądam się potrzebie klinicznej, a gdy zidentyfikuję sensowny projekt, staram się o środki na jego realizację. Odbywa się to poprzez przygotowanie wniosku o dotację wraz z klinicystą. Od złożenia wniosku do uzyskania wielomilionowego grantu z jednostek federalnych, takich jak Narodowy Instytut Zdrowia, mijają lata, dlatego ważne jest, aby być zdyscyplinowanym i działać wcześnie. Po otrzymaniu finansowania prowadzę wspólne badania z okulistami, a ścieżka jest zwykle taka sama, opracowujemy oprzyrządowanie i metody, przechodzimy do badań klinicznych na pacjentach i sprawdzamy, jak może to wpłynąć na praktykę kliniczną. Ostatecznym celem jest korzyść dla opieki nad oczami pacjentów, więc kiedy osiągamy koniec projektu badawczego i technologia jest opracowana, zaczynamy zwracać się do firm, aby zobaczyć, czy są chętni do komercjalizacji naszej technologii i doprowadzenia jej do skutku dla pacjentów.

Jak rozpoczęła się Pana przygoda z obrazowaniem optycznym i dlaczego wybrał Pan właśnie tę dziedzinę?

Najpierw zaczęło się od oka, jeszcze przed obrazowaniem optycznym. Oko jest bardzo fascynującą częścią ciała pod wieloma względami. Obejmuje funkcje mechaniczne i optyczne, przekształca światło w sygnały elektryczne, które wędrują do mózgu i mogą być wykorzystywane jako okno na resztę ciała. Zaangażowałem się w badania nad oczami we Włoszech podczas mojego projektu pracy magisterskiej z inżynierii elektrycznej – rozwoju optycznego czujnika do monitorowania stężenia glukozy w oku jako potencjalnego środka oceny stężenia glukozy we krwi. Zamiast wykrywać stężenie glukozy we krwi, celem było nieinwazyjne zmierzenie go przez przednią komorę oka za pomocą techniki optycznej zwanej polarymetrią. W ten sposób zainteresowałem się badaniami oka, choć wtedy nie było to jeszcze obrazowanie. Po ukończeniu studiów szukałem możliwości pracy za granicą w zakresie technologii pomiarowych stosowanych w badaniach oka. Znalazłem wtedy stanowisko research associate w zespole w Bascom Palmer Eye Institute opracowującym jedno z pierwszych wdrożeń wysokorozdzielczego obrazowania OCT do badania siatkówki człowieka i siatkówki małych zwierzęcych modeli chorób tego organu. To właśnie w tym czasie zapoznałem się z pionierskimi pracami prof. Wojtkowskiego nad obrazowaniem OCT w domenie spektralnej. W 2022 r. mija siedemnasty rok mojej pracy w Bascom Palmer Eye Institute.

Czy pacjenci w USA mają świadomość, że dokładniejsze metody obrazowania oczu prowadzą do skuteczniejszych terapii chorób oczu?

Z mojego doświadczenia wynika, że niewystarczająco.

W jaki sposób upowszechnia Pan wyniki swoich badań i publikacje?

Uczestniczyłem w National Alliance for Eye and Vision Research, organizacji promującej rzecznictwo i edukację publiczną w zakresie badań nad okiem i widzeniem sponsorowanych przez National Institute of Health i inne agencje federalne w USA. Każdego roku wybierają kilku badaczy w dziedzinie widzenia i szkolą ich, aby edukować ustawodawców z Kongresu, media i konsumentów na temat wartości badań nad oczami i wzroku. Na przykład spotkaliśmy się z decydentami rządowymi i wyjaśniliśmy znaczenie przeznaczania pieniędzy podatników na badania nad wzrokiem, a także przekonywaliśmy ich do promowania większego finansowania badań nad wzrokiem w następnym projekcie ustawy. W dłuższej perspektywie pozwoli to zaoszczędzić pieniądze podatników, ponieważ finansowane badania zostaną wydane na poprawę opieki zdrowotnej.

Obrazowanie OCT jest doskonałym przykładem tego, jak technologia może prowadzić do znacznych oszczędności środków publicznych, z szacunkowym ponad 10 miliardów dolarów redukcji wydatków w ciągu ostatnich 15 lat. Oszczędności są wynikiem tego, że klinicyści są w stanie zapewnić bardziej spersonalizowaną opiekę nad oczami poprzez wykorzystanie OCT do podjęcia decyzji, kiedy zastrzyk na receptę jest potrzebny w leczeniu niektórych form zwyrodnienia plamki żółtej. Dzięki OCT, proces ten został zoptymalizowany poprzez zmniejszenie liczby potrzebnych zastrzyków, jak również komplikacji i dyskomfortu pacjentów.

Jeśli chodzi o ogół społeczeństwa, nie ma zbyt wielu kanałów rozpowszechniania naszych badań i podkreślania ich znaczenia, ale w przypadku popularyzacji nauki, staram się używać tego samego prostego języka i przekazu, co w przypadku decydentów, pokazując korzyści z badań stosowanych w okulistyce. Pracując w szpitalu, mam świetną okazję tłumaczyć to bezpośrednio pacjentom, gdy biorą udział w naszych badaniach klinicznych. Inne kanały dotarcia do szerszej publiczności to media społecznościowe, takie jak Instagram, LinkedIn, Facebook.

Proszę opowiedzieć o działaniach Bascom Palmer Eye Institute ukierunkowanych na promocję badań i nauki o oczach.

Nasz dział komunikacji i marketingu regularnie wydaje magazyn o nazwie „Images”, który skupia się na postępach medycznych i naukowych w naszej instytucji. Można tam na przykład przeczytać, jak nasi lekarze i naukowcy prowadzą walkę ze zwyrodnieniem plamki żółtej i jak pomagamy niemowlętom widzieć. Nawiązaliśmy również współpracę z lokalnym muzeum nauki w Miami, gdzie naukowcy i klinicyści z naszej instytucji organizują wieczorne seminaria, aby edukować społeczeństwo w zakresie naszych badań. Poza tym Bascom Palmer ma oficjalne kanały również na mediach społecznościowych, a my jesteśmy zachęcani przez dział komunikacji i PR do współpracy, aby promować naszą pracę bezpośrednio na profilach naszej instytucji.

Jaka jest Pana zdaniem najlepsza formuła przybliżenia szerszej publiczności znaczenia i istoty pracy naukowca zajmującego się badaniami oczu?

Na ogół naukowcom bardziej odpowiadają konwencjonalne i formalne sposoby upowszechniania badań, takie jak publikacje na łamach czasopism naukowych, seminaria i prezentacje na konferencjach.  Chociaż jest to kluczowe dla przekazywania korzyści z naszych badań innym badaczom i profesjonalnym praktykom, ma ograniczony zasięg dla szerszej społeczności. Nowsze pokolenie naukowców generalnie wykonuje lepszą pracę w zakresie promowania znaczenia ich badań na nieformalnych kanałach, takich jak platforma mediów społecznościowych. Posiadanie działu marketingu jest doskonałym narzędziem do informowania społeczeństwa o wynikach badań. Jak już wcześniej wyjaśniłem, pomocny jest bezpośredni kontakt z pacjentami. Wizyty w szkołach są również dobrym sposobem na wprowadzenie młodych ludzi do nauki i przyzwyczajenie ich do znaczenia badań naukowych. Artykuły popularnonaukowe mogą być również publikowane w prasie głównego nurtu lub można w celu popularyzatorskim organizować imprezy z lokalnymi muzeami.

Czy zauważa Pan jakieś różnice w amerykańskim i europejskim podejściu do PR-u nauki, a jeśli tak, to jakie?

Europejczycy włożyli wiele wysiłku w promocję swoich badań, obserwujemy na przykład, że naukowcy są zachęcani do posiadania własnych stron internetowych laboratoriów czy kont na social mediach. W USA promocją pracy naukowców zajmują się zwykle uniwersyteckie działy komunikacji. W Europie również funkcjonują świetne mechanizmy promocyjne, np. przy otrzymaniu grantu zachęca się do reklamowania swoich badań np. na koncie na Twitterze. W USA pracuje dla nas specjalny dział marketingu, oni zawsze szukają nowości, ale nie jesteśmy naciskani i tylko od nas zależy, jak bardzo wykorzystamy ich zasoby, by dać się poznać szerszej publiczności.

Chcielibyśmy poznać Pana najważniejszy cel zawodowy w służbie społeczeństwu.

Generowanie rozwiązań mających na celu poprawę opieki nad oczami. Nadrzędnym sensem mojej pracy jest przynoszenie poprawy widzenia pacjentów, najlepiej przechodząc od badań do technologii komercyjnej. Moim marzeniem jest, aby pewnego dnia ludzie w potrzebie mogli korzystać z opracowanej przeze mnie technologii.

Proszę podzielić się swoimi wrażeniami z Polski i z dotychczasowej współpracy z polskimi naukowcami.

Po raz pierwszy odwiedziłem Polskę we wrześniu tego roku. Moje wrażenie jest takie, że polski rząd inwestuje znaczne ilości zasobów i pieniędzy w badania naukowe. Widzę, że jednostki naukowe mają dostęp do wielu grantów i innych źródeł finansowania badań. Najnowocześniejsze technologie opracowywane przez Państwa centrum i inne instytucje sugerują, że poziom edukacji jest w Polsce bardzo zaawansowany. Biorąc udział w różnych konferencjach, na których spotykałem polskich naukowców, mogę potwierdzić, że nigdy nie zawiedli oni w prezentowaniu badań na najwyższym poziomie. Ponadto, jesteście bardzo otwarci i cenicie sobie współpracę. Mocno wierzę we współpracę między naukowcami i uważam, że globalne badania powinny ewoluować w kierunku międzynarodowej i interdyscyplinarnej współpracy, aby zjednoczyć siły i stać się komplementarnymi w tym, co robimy. To jest właśnie siła dzisiejszej nauki, którą umożliwiają nowoczesne technologie i narzędzia komunikacji.

Bardzo dziękuję za rozmowę i za wizytę w ICTER, profesorze Marco Ruggeri. Cieszymy się na współpracę z Panem i nie możemy się doczekać rozpoczęcia wspólnych projektów naukowych.

Od lewej do prawej: dr Andrea Curatolo, prof. Marco Ruggeri i prof. Maciej Wojtkowski.

Zdjęcie: dr Karol Karnowski.

Wywiad przeprowadziła Manager ds. Komunikacji i PR, dr Anna Przybyło-Józefowicz.

28.07.2022

„Prometeusze przyszłości” – wywiad opublikowany w magazynie Poland Weekly

W dniu 28 lipca 2022 roku w magazynie anglojęzycznym Poland Weekly ukazał się artykuł „Prometeusze przyszłości. Jak międzynarodowy zespół naukowców z siedzibą w Polsce toczy globalną bitwę o nasze oczy.” W materiale przedstawiono serię wywiadów z Principal Investigators kierującymi naszymi pięcioma grupami badawczymi. Opowiadają oni o swoich osiągnięciach badawczych, długoterminowych celach, wyzwaniach naukowych, marzeniach i swojej koncepcji wzroku.

Przeczytaj artykuł na stronie Poland Weekly.

20.05.2022

Jak sprawdzić, czy fotoreceptory działają? Przełomowa technika do diagnostyki chorób oczu

Czy można wykrywać niedziałające fotoreceptory jak martwe piksele na matrycy? Do tej pory nie było to możliwe, ale nowa technika pozwoli na błyskawiczną i nieinwazyjną metodę oceny stanu fizjologicznego siatkówki. To może być prawdziwy przełom w leczeniu chorób oka.

Przez długi czas to elektroretinografia (ERG) była jedyną zaawansowaną metodą oceny stanu fizjologicznego funkcji siatkówki. W ostatnich latach opracowano nową technikę zwaną optoretinografią (ORG). W jednej z wariantów tej techniki, fizjologiczna odpowiedź fotoreceptorów siatkówki na światło widzialne, powodująca nanometryczną zmianę długości drogi optycznej, jest mierzona za pomocą tomografii optycznej OCT.

Do tej pory możliwości badania odpowiedzi siatkówki na stymulację światłem migoczącym były ograniczone. Naukowcy z Międzynarodowego Centrum Badań Oka (ICTER) wykorzystali wynalezioną przez nich czasowo-częstotliwościową tomografię optyczną OCT (Spatio-Temporal Optical Coherence Tomography STOC-T) do rejestrowania optoretinogramów siatkówki.

Badania zostały przeprowadzone przez dr Sławomira Tomczewskiego, Piotra Węgrzyna, dr Dawida Boryckiego, dr Egidijusa Auksoriusa, prof. Macieja Wojtkowskiego i dr Andreę Curatolo z ICTER, a wyniki opublikowano w czasopiśmie „Biomedical Optics Express” w pracy zatytułowanej „Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system” (https://doi.org/10.1364/BOE.444567).

Jak badać sygnały elektryczne fotoreceptorów?

Mianem badań elektrofizjologicznych (ERG) określamy grupę obserwacji i rejestracji zmian prądów czynnościowych powstających w gałce ocznej, w okolicy wzrokowej kory mózgowej i mięśniach gałkoruchowych. Szczególnie interesujące pod kątem diagnostycznym jest badanie prądów czynnościowych generowanych przez siatkówkę, czyli część oka, która odpowiada za odbiór bodźców wzrokowych. Najważniejszym elementem są światłoczułe receptory, zmodyfikowane neurony: czopki i pręciki. Ludzka siatkówka zawiera ok. 6 mln czopków i 100 mln pręcików.

Pręciki to receptory wrażliwe na natężenie światła, które odpowiadają za widzenie czarno-białe. Najwięcej jest ich w częściach peryferyjnych siatkówki, a są nieobecne w dołku środkowym. Zawierają rodopsynę – światłowrażliwy barwnik, którego przemiany biochemiczne odpowiadają za widzenie. Z kolei czopków jest najwięcej w centralnej części siatkówki i odpowiadają za widzenie barwne. Dysponują barwnikami, które są wrażliwe na kolory podstawowe: niebieski, zielony i czerwony. Czopki odpowiadają także za ostrość widzenia – najwięcej z nich jest w plamce żółtej.

Ocena jakości fotoreceptorów jest kluczowa, bo ich dysfunkcje mogą pomóc w rozpoznaniu różnych chorób oka, niektórych prowadzących do ślepoty. Najczęstszym rodzajem badania elektrofizjologicznego jest elektroretinografia (ERG). Technika ta bada czynnościowy potencjał elektryczny powstający w gałce ocznej pod wpływem bodźca świetlnego. Samo badanie polega na założeniu na oko elektrody pod postacią soczewki kontaktowej lub nylonowej nitki nasyconej środkiem przewodzącym (elektroda DTL). Bodziec świetlny jest rejestrowany jako krótki błysk (1-3 ms), błysk podwójny lub migocący (flesz ERG), a także szachownicę rozjaśniających i zaciemniających kwadratów. Badanie polega na wysyłaniu impulsów świetlnych z lampy emitującej czerwone światło. Specjalne urządzenie odczytuje wartości napięcia, które powstają pod wpływem tych bodźców.

Badanie ERG wykonuje się w warunkach adaptacji do ciemności (skotopowe ERG) i w warunkach adaptacji do światła (fotopowe ERG). Każda odpowiedź ERG składa się z dwóch składowych: fali a i b. Fala a jest początkowym wychyleniem ujemnym w stosunku do linii izoelektrycznej – pojawia się około 35 ms po zadziałaniu bodźca. Powstaje ona w wyniku pobudzania zewnętrznych części fotoreceptorów (czopków i pręcików). Fala b, czyli wychylenie dodatnie w stosunku do linii izoelektrycznej, pojawia się około 50 m po zadziałaniu bodźca i pochodzi z komórek Müllera. Jest zatem odzwierciedleniem procesów zachodzących w warstwie komórek dwubiegunowych siatkówki.

Fotoreceptory jak martwe piksele

Niestety, badanie ERG nie jest idealne, bo nie można za jego pomocą wykryć kurczenia się fotoreceptorów, a co za tym idzie, określić ich roli w procesie widzenia. Dlatego za znacznie bardziej użyteczną technikę uznaje się optoretinografię (ORG), która koncentruje się na pomiarze sygnałów optycznych wywołanych światłem z fotoreceptorów za pomocą ultraczułej wersji OCT.

Pomiary odpowiedzi siatkówki na migoczący bodziec okazały się pomocne w analizie adaptacji siatkówki do światła i różnic krytycznej częstotliwości migotania (CFF) między plamką a peryferiami. Do tej pory, w literaturze przedstawiono ograniczoną liczbę badań ORG z wykorzystaniem migotania. Spośród nich, w badaniu iORG zmierzono odpowiedź fotoreceptorów na bodziec okresowy ograniczony do pojedynczej niskiej częstotliwości (5 Hz), natomiast w dwóch nowszych badaniach pORG zmierzono odpowiedź fotoreceptorów przystosowanych do ciemności w zakresie od 1-6,6 Hz oraz wolną odpowiedź wewnętrznej warstwy splotowej odpowiednio w zakresie od 1-50 Hz. Do tej pory nie udawało się zmierzyć szybkiej odpowiedzi siatkówki przy częstotliwościach powyżej 10 Hz. Aż do teraz.

Naukowcy z ICTER pobudzali siatkówkę tzw. flickerem, czyli emiterem światła migoczącego ze stałą częstotliwością, dzięki czemu byli w stanie rejestrować odpowiedzi siatkówki przy częstotliwościach 15-20 Hz. To z kolei pozwala określić zmiany w grubości fotoreceptorów rzędu kilku nanometrów w czasie rzeczywistym w odpowiedzi na sygnał świetlny – a tym samym stwierdzić, które elementy biorą udział w procesie widzenia.

– Po raz pierwszy możemy zaobserwować malutkie sygnały z dna oka, które są generowane przez poszczególne fotoreceptory. Nie udało się to osiągnąć nikomu wcześniej. Nie byłoby to też możliwe, gdyby nie poprzednie badania naszych naukowców i opracowanie techniki STOC-T – mówi prof. Maciej Wojtkowski, kierownik ICTER.

Naukowcy z ICTER wykazali, że można wykryć statystycznie istotne różnice w amplitudach modulacji długości drogi optycznej fotoreceptorów (OPL) w odpowiedzi na różne częstotliwości migotania i przy lepszym stosunku sygnału do szumu (SNR) niż w przypadku oka zaadaptowanego do ciemności.

Eksperymenty wykazały, że można wykrywać odpowiedź fotoreceptorów na różne częstotliwości migotania w sposób powtarzalny za pomocą systemu STOC-T i z poprawionym SNR. Potwierdzono także zdolność do przestrzennego wykrywania odpowiedzi na wzorzysty bodziec z paskami światła migoczącymi z różnymi częstotliwościami. Wyniki te podkreślają perspektywę bardziej obiektywnego badania zmian CFF w całej siatkówce. To może pozwolić na wczesne wykrywanie zwyrodnienia siatkówki i innych nieprawidłowości działania fotoreceptorów. Zespół uczonych z ICTER już planuje kolejne prace badawcze, których celem będzie poznanie skutków biologicznych i medycznych zaobserwowanego zachowania fotoreceptorów.

Autor: Marcin Powęska

Zdjęcie: Karol Karnowski

Publikacja:

Tytuł „Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system”.

Magazyn: Biomedical Optics Express Vol. 13,Issue 4,pp. 2186-2201(2022)

Autorzy: Sławomir Tomczewski, Piotr Węgrzyn, Dawid Borycki, Egidijus Auksorius, Maciej Wojtkowski, and Andrea Curatolo.

Numer DOI: https://doi.org/10.1364/BOE.444567

30.03.2022

Prof. Krzysztof Palczewski został tegorocznym laureatem Nagrody Goodman and Gilman Award in Receptor Pharmacology

American Society for Pharmacology and Experimental Therapeutics (ASPET) przyznało dr Krzysztofowi Palczewskiemu z Uniwersytetu Kalifornijskiego w Irvine nagrodę Goodman and Gilman Award in Receptor Pharmacology w 2022 roku. Nagroda im. Louisa S. Goodmana i Alfreda Gilmana w dziedzinie farmakologii receptorów została ustanowiona w 1980 roku w celu wyróżnienia i stymulowania wybitnych badań w dziedzinie farmakologii receptorów biologicznych. Badania takie mogą przyczynić się do lepszego zrozumienia mechanizmów procesów biologicznych i potencjalnie stanowić podstawę do odkrycia leków przydatnych w leczeniu chorób.

Dr Palczewski otrzymuje tę nagrodę w uznaniu jego nowatorskich i odkrywczych badań nad mechanizmami aktywacji receptorów sprzężonych z białkami G, które przyczyniły się do lepszego zrozumienia struktury receptorów, mechanizmów sygnalizacji, defektów prowadzących do chorób oraz metod leczenia umożliwiających zachowanie wzroku.

Dr Palczewski jest Donal Bren Professor i Distinguished Professor na Uniwersytecie Kalifornijskim w Irvine, posiada Irving H. Leopold Chair of Ophthalmology i jest dyrektorem Center for Translational Vision Research w Gavin Herbert Eye Institute. Doktorat z biochemii uzyskał na Politechnice Wrocławskiej, a staż podoktorski odbył na Uniwersytecie Florydy.

W swoich badaniach dr Palczewski wykorzystuje różne multidyscyplinarne podejścia do badania fototransdukcji i cyklu widzenia, aby scharakteryzować układ wzrokowy w zdrowiu i chorobie. Dążenie do kompleksowego zrozumienia procesów widzenia, w tym ekspresji genów i regulacji transkrypcji, jest niezbędne w walce z defektami genetycznymi, zaburzeniami metabolicznymi i czynnikami środowiskowymi prowadzącymi do ślepoty. Zidentyfikował elementy szlaków sygnałowych układu wzrokowego dzięki ukierunkowanej biologii strukturalnej na różnych poziomach rozdzielczości, uzyskanych za pomocą klasycznej i czasowo rozdzielczej krystalografii, mikroskopii krioelektronowej i komórkowej tomografii krioelektronowej. Dzięki precyzyjnym badaniom strukturalnym i funkcjonalnym uczestniczących komórek siatkówki oraz ich organizacji wewnątrzkomórkowej za pomocą dwufotonowej mikroskopii in vivo i ex vivo, jego praca przyczyniła się do przełomowych osiągnięć w zakresie rozpoznawania zaburzeń biochemicznych w celu wczesnego diagnozowania chorób oczu i stratyfikacji pacjentów w celu odkrycia i zatwierdzenia terapii farmakologicznych oraz zapobiegania chorobom degeneracyjnym siatkówki.

Dr Palczewski jest członkiem ASPET od 2015 roku.

Nagroda zostanie wręczona podczas ASPET Business Meeting and Awards Presentation w trakcie ASPET Annual Meeting at Experimental Biology 2022 w sobotę, 2 kwietnia o godz. 16:30 w Filadelfii. Ponadto, dr Palczewski wygłosi nagrodzony wykład zatytułowany G Protein-coupled Receptor Signaling in Phototransduction na dorocznym spotkaniu w 2022 r. w niedzielę, 3 kwietnia o godz. 13:00 w Filadelfii.

Profesor K. Palczewski jest współzałożycielem ICTER. Serdecznie gratulujemy mu otrzymania tej prestiżowej nagrody.

Źródło: ASPET | The Goodman and Gilman Award in Receptor Pharmacology

14.03.2022

Badania OCT bez szumów. Nowa metoda do lepszego wykrywania chorób oka

Na świecie na poważne zaburzenia wzroku lub ślepotę cierpi aż 285 milionów ludzi. Niestety, większość z nich nie ma dostępu do nowoczesnych metod leczenia, przez co na pomoc często przychodzi za późno. Może się to zmienić dzięki usprawnieniu narzędzia diagnostycznego do wykrywania patologii oka znanego od trzech dekad.

Tomografia optyczna OCT jest jednym z najbardziej podstawowych i najdokładniejszych badań wykorzystywanych w diagnostyce chorób oczu. Pozwala szczegółowo obejrzeć poszczególne struktury oczu, a tym samym wykryć choroby plamki żółtej, zmiany cukrzycowe siatkówki, jaskrę czy nowotwory. Niestety, nie jest to metoda idealna, bo naturalnie pojawiające się szumy podczas badania znacznie ograniczają dokładność obrazowania. Zespół naukowców z Międzynarodowego Centrum Badań Oka (ICTER) postanowił to zmienić, wprowadzając do metody OCT istotne zmiany. Tak powstała jeszcze lepsza czasowo-częstotliwościowa tomografia optyczna OCT, która tłumi szumy i pozwala na uzyskiwanie dokładnych obrazów.

Badania zostały przeprowadzone przez dr Edgidijusa Auksoriusa, dr Dawida Boryckiego, Piotra Węgrzyna i prof. Macieja Wojtkowskiego z ICTER, a wyniki opublikowano w czasopiśmie „Optics Letters” w pracy zatytułowanej „Multimode fiber as a tool to reduce cross talk in Fourier-domain full-field optical coherence tomography„.

Jak przebiega badanie OCT?

Metodę OCT cechuje wysoka rozdzielczość, dlatego jest jednym z najczęściej stosowanych badań okulistycznych. Jest całkowicie bezbolesna i bezpieczna – nie ma żadnych przeciwwskazań do jej stosowania (badanie może być wykonywane nawet u kobiet w ciąży). Najlepiej sprawdza się w diagnostyce oczu, np. postępu jaskry, retinopatii cukrzycowej, czy zwyrodnienia plamki żółtej związanego z wiekiem (AMD), które stanowią najczęstszą przyczynę utraty widzenia centralnego wśród osób w podeszłym wieku. W początkowej fazie AMD na dnie oka można zaobserwować pojedyncze złogi, czyli przegrupowania barwnika oraz subtelne zmiany zanikowe. Podczas gdy w przypadku rozwoju cukrzycy w obrazach OCT obserwuje się zmiany struktury mikronaczyniowej siatkówki.

Samo badanie OCT trwa kilka-kilkanaście minut. Pacjent siada przed specjalnym aparatem i ma patrzeć we wskazany przez lekarza punkt, ograniczając mruganie. Głowica pomiarowa ustawiona jest 2-3 cm od oka, więc nie ma możliwości, by miała jakikolwiek kontakt z naszym narządem wzroku. W większości przypadków badanie OCT nie wymaga specjalnego przygotowania – pacjent może przyjechać na nie samochodem. Sama interpretacja wyników jest jednak złożona, dlatego powinna być przeprowadzona przez doświadczonego okulistę.

Biofizyka OCT

Zrozumienie podstaw fizycznych badania OCT nie jest łatwe. Technika ta pozwala na przeprowadzenie „biopsji optycznej” w czasie rzeczywistym, czyli wizualizacje mikrostruktury tkanki oraz zdiagnozowanie ewentualnych zmian patologicznych. W tomografii optycznej wszelkie dane o strukturze obiektu są uzyskiwane z natężenia sygnału interferencyjnego (powstałego w wyniku nakładania się dwóch wiązek laserowych). Tomografia optyczna OCT stosowana obecnie w gabinetach okulistycznych na całym świecie wykorzystuje ciekawą własność światła, zwaną spójnością w czasie lub spójnością w przestrzeni. Podczas badania OCT wykorzystuje się źródła światła częściowo spójnego (czasowo, ale nie przestrzennie) – aparat dokonuje pomiaru różnicy dróg optycznych między zwierciadłem w interferometrze a kolejnymi warstwami próbki obiektu (okiem).

Wewnątrz interferometru znajduje się specjalna płytka, która dzieli promienie na dwie części i rejestruje interferencję promienia odbitego od struktur tkanek i promienia padającego. Znając różnice dróg optycznych, można określić położenie analizowanych struktur oka. Dane są przetwarzane przez komputer, a następnie prezentowane pod postacią dwuwymiarowych obrazów przekrojów (tomogramów).

Tkanki to struktury wieloskładnikowe, które w różny sposób rozpraszają światło. W zależności od stopnia odbicia lub pochłaniania promieniowania, prezentowany jest obraz w skali szarości lub barwach. Obiekty o najwyższym współczynniku odbicia widoczne są na czerwono lub biało, a o najsłabszym sygnale w ciemnych kolorach lub ciemnoszaro. Tkanki o pośrednich wartościach odbijania światła prezentują się w barwie żółto-zielonej lub odcieniach szarości.

W przypadku tomografii optycznej z użyciem światła częściowo spójnego wykorzystywana jest interferometria niskokoherentna, czyli taka, w której interferencja promieniowania zachodzi na drodze rzędu mikrometrów (dzięki zastosowaniu diod superluminescencyjnych lub laserów o krótkich impulsach). Zazwyczaj stosuje się źródła promieniowania z zakresu podczerwieni. Do klasycznego badania OCT nie można stosować źródeł światła niespójnego (np. halogenów, LED-ów czy żarówek).

Zespół naukowców z Międzynarodowego Centrum Badań Oka (ICTER) jako pierwszy na świecie połączył właściwości spójności światła w czasie i przestrzeni, co umożliwia dokładniejszą diagnostykę oka.

Jak można usprawnić metodę OCT?

Czasowo-częstotliwościowa tomografia optyczna OCT (Spatio-Temporal Optical Coherence Tomography STOC-T) jest skutecznym narzędziem do obrazowania oka dzięki swojej szybkości i zdolności do pozyskiwania stabilnej informacji fazowej w pełnym polu widzenia (nie dla skanującej, skupionej wiązki  jak w przypadku lasera). Do tej pory, głównym problemem przy stosowaniu tej metody (od 2006 r.), był szum (tzw. plamki), który utrudnia dokładną wizualizację naczyniówki – części oka kluczowej ze względu na udział w patogenezie wielu chorób (dostarcza tlen i składniki odżywcze do fotoreceptorów). Naukowcy z ICTER wykoncypowali, że użycie światłowodu wielomodowego o odpowiedniej długości, poprawia obrazowanie oka.

Światłowód wielomodowy to taki, który na swoim końcu emituje kilkaset niepowtarzających się wzorów przestrzennych w przekroju wiązki (tzw. modów poprzecznych). Do tej pory wykorzystywano wielokrotnie takie urządzenia do transmisji danych za pomocą światła, ale nikt nie wpadł na to, że kilkaset metrów takiego światłowodu powoduje, że każdy ze wzorków przestrzennych będzie wychodził z niego w różnym czasie. Dzięki temu uzyskuje się kilkaset obrazów OCT rejestrowanych w tym samym pomiarze, które po dodaniu do siebie redukują niepożądane efekty, takie jak szum plamkowy. Dzięki wykorzystaniu tego pomysłu do OCT zespół uczonych z ICTER opracował nowy sposób kontroli fazy optycznej STOC-T, który pozwolił na uzyskanie in vivo obrazów siatkówki i rogówki w wysokiej rozdzielczości. Ta metoda pozwala znacznie lepiej zobaczyć obrazy przekrojów z warstwy naczyniowej znajdującej się pod siatkówką (do tej pory nie było to możliwe). Warto podkreślić, że światłowód był używany pasywnie, bez żadnych ruchomych elementów.

Tomografia optyczna OCT jest jednym z rutynowych badań okulistycznych na całym świecie. Dzięki usprawnieniom zespołu ICTER, pozwoli ona na identyfikowanie zmian na poziomie komórkowym, co przełoży się na lepszą diagnostykę oraz zrozumienie powstawania różnych chorób oczu.

Autor: Marcin Powęska

Zdjęcia Piotra Węgrzyna wykonał: Karol Karnowski

Publikacja

Tytuł:

Multimode fiber as a tool to reduce cross talk in Fourier-domain full-field optical coherence tomography

Autorzy:

Egidijus Auksorius, Dawid Borycki, Piotr Wegrzyn, Ieva Žičkienė, Karolis Adomavičius, Bartosz L. Sikorski, and Maciej Wojtkowski.

Magazyn naukowy:

Optics Letters Vol. 47,Issue 4, pp. 838-841(2022) DOI: https://doi.org/10.1364/OL.449498

04.02.2022

Światowy Dzień Walki z Rakiem – nowotwory oczu

4 lutego to Światowy Dzień Walki z Rakiem. To okazja, żeby poprawić świadomość społeczeństwa na temat tej ciężkiej i trudnej do zwalczenia choroby dotykającej miliony ludzi na całym świecie.

Rak jest nazwą ogólną dla grupy nowotworów złośliwych wywodzących się z tkanki nabłonkowej, choć potocznie używana jest w odniesieniu do wszystkich nowotworów złośliwych, rozwijających się w różnych częściach ciała.

Jako jednostka naukowa, ICTER (ang. International Centre for Translational Eye Research, pl. Międzynarodowe Centrum Badań Oka) jest szczególnie zainteresowane nowotworami złośliwymi rozwijającymi się w obrębie narządu wzroku. Do najczęstszych należą: czerniak, chłoniak, rak płaskonabłonkowy, oraz dotykający dzieci – siatkówczak oka.

Czerniak zarówno oka jak i bardziej powszechny rozwijający się na skórze pochodzi z dzielących się szybko i w sposób niekontrolowany komórek barwnikowych – melanocytów. Czerniaki oka umiejscawiają się w różnych miejscach gałki ocznej, a także na powiekach. 

Wśród czynników predysponujących do rozwoju nowotworu należą: jasny kolor oczu i skóry, obecność na skórze znamion o nieregularnych kształtach, nadużywanie kąpieli słonecznych w tym solariów, a także wiek (powyżej 50 r. ż.). Badania wielu zespołów naukowych nad genetycznymi uwarunkowaniamijednego z czerniaków oka, tzw. uveal melanoma (UM) wskazały na szereg genów, których mutacje prowadzą do rozwoju nowotworu. Wśród nich znajdują się geny: GNAQGNA11PLCB4,CYSLTR2, BAP1SF3B1EIF1AX oraz ostatnio zidentyfikowany MBD4, których produkty białkowe zaangażowane są w wiele procesów biologicznych. Wcześnie zdiagnozowany nowotwór na początkowych stadiach wzrostu może być skutecznie leczony. Natomiast przerzuty z guza pierwotnego do innych części ciała, jakie odnotowuje się u około połowy chorych prowadzą do śmierci w 20-30% przypadków w ciągu 5 lat, a aż w 45% w ciągu 15 lat od diagnozy. To przerzuty stanowią największe wyzwanie w leczeniu nowotworów nie tylko narządu wzroku.

leczeniu czerniaka lekarze wspomagają się radioterapią, zabiegami laserowymi oraz operacjami chirurgicznymi mającymi na celu usunięcie nowotworu z zachowaniem oka. Opisane są też przypadki dające nadzieję na sukces w leczeniu UM z wykorzystaniem inhibitorów PD1 – preparatów stosowanych w obiecującej i stosunkowo nowej terapii celującej w punk kontrolujący programowaną śmierć komórki. Poza wspomnianą terapią testowane są inne rozwiązania będące w różnych fazach badań klinicznych. Poza immunoterapią, badane są potencjalne leki w ramach tzw. terapii celowanej (wymierzonej np. w konkretny enzym działający w komórce), terapii epigenetycznej (wymierzonej w białka modyfikujące DNA), czy leczenia specyficznego dla wątroby, będącej głównym narządem, w którym rozwijają się przerzuty czerniaka oka. Poszukiwania skutecznych leków nie ustają, wiele badań zakończyło się porażką, wiele z nich wciąż daje nadzieje, a kolejne są w początkowych fazach i rekrutacje ochotników trwają.

Podobnie rzecz się ma z mniej popularnym chłoniakiem wewnątrzgałkowym oka. Pierwotny chłoniak wewnątrzgałkowy jest „odmianą” chłoniaka centralnego układu nerwowego, podczas gdy wtórny chłoniak okarozwija się poza układem nerwowym i zajmuje oko w wyniku przerzutowania. Etiologia chłoniaka pierwotnego jest wciąż tajemnicza. Uważa się, że rozwój nowotworu wewnątrz oka jest następstwem “zwabienia” odpowiednich komórek krążących w naczyniówce oka do nabłonka barwnikowego siatkówki poprzez obecne w nim chemoatraktanty takie jak BLC (ang. B-lymphocyte chemoattractant), czy SDF-1 (ang. stromal cell-derived factor-1). Większość chłoniaków pierwotnych oka powstaje z limfocytów B, a jedynie nieliczne z limfocytów T. Według innej teorii – proponowanej dla chorych z upośledzonym układem immunologicznym np. z AIDS, czynniki infekcyjne takie wirus EPV (ang. Epstein-Barr virus) powodują niekontrolowaną proliferację limfocytów B pod nieobecność supresorowych limfocytów T.

Przy obrazowaniu chłoniaka, czy siatkówczaka oka (opisanego poniżej), wykorzystuje się wiele metod, w tym opracowaną przez założyciela ICTER metodę OCT (ang. Optical coherence tomography). 

leczeniu chłoniaka wykorzystuje się zarówno rozwiązania o działaniu miejscowym – nastrzykiwanie oka lekami (Methotrexate, Rituximab) radioterapię, czy witrektomię (operację przeprowadzaną w tylnym odcinku gałki ocznej, na ciele szklistym i siatkówce), jak również rozwiązania systemowe. Obecnie stosuje się chemoterapię z użyciem pojedynczych leków oraz wersję kombinowaną, kiedy pacjent otrzymuje jednocześnie różne leki. Powszechnym staje się łączenie chemioterapii z naświetlaniem. Mimo dopuszczenia do kliniki kilku preparatów, wciąż opracowywane są nowe – bardziej skuteczne i bezpieczne.

Kolejnym przykładem nowotworu oka jest siatkówczak. Pacjenci to małe dzieci w wieku poniżej 5 roku życia, u których nowotwór rozwija się w siatkówce jednego bądź obu oczu. Wcześnie zdiagnozowany i odpowiednio leczony daje szanse na pełne wyleczenie. Szacuje się, że za 40% przypadków odpowiadają czynniki genetyczne – odziedziczone lub nabyte wskutek mutacji somatycznych. Geny, których mutacje prowadzą do rozwoju nowotworu to m. in.: RB1BCORMDM4KIF14MYCNDEKE2F3, CDH11 czy RBL2, które kodują białka zaangażowane w różne procesy biologiczne. Ponadto zmiany w metylacji niektórych genów (np. SYK) oraz rozregulowany poziom pewnych mikro RNA (klaster miR-17~92 imiR-106b~25) są przyczyną rozwoju siatkówczaka. Sposób leczeniasiatkówczaka zależy od wielkości guza. W przypadku małych rozmiarów stosuje się krioterapię lub laserową fotokoagulację, czy termoterapię. Większe nowotwory leczone są z wykorzystaniem brachy- i radioterapii, chemioterapii ogólnej lub podawanej miejscowo, oraz w skrajnych przypadkach, gdy guz osiąga znaczne rozmiary, chirurgicznie (przez usuniecie całego oka). Nieleczony siatkówczak może się rozrastać i dawać przerzuty do węzłów chłonnych, kości, szpiku oraz centralnego układu nerwowego. Ponadto w przypadku chorych obciążonych genetycznie – z mutacją w genie RB1, istnieje zwiększone ryzyko rozwinięcia innych guzów pierwotnych. W późniejszym wieku u takich osób może rozwinąć się rak kości, płuc, pęcherza moczowego czy czerniak.

Rak płaskonabłonkowym rozwijający się w różnych częściach ludzkiego oka – najczęściej na powierzchni gałki ocznej jest mniej inwazyjny od omówionych powyżej nowotworów i zwykle nie daje przerzutów do innych organów. Nieleczony może rozprzestrzenić się w obrębie oka i doprowadzić do jego utraty.

W walce z nowotworami oka ważne jest szybkie ich wykrycie oraz zastosowanie odpowiednich środków leczenia, które dzięki osiągnieciom nauki wciąż są udoskonalane. Dla naukowców ICTER to jeden z ważniejszych celów.

Autor: Dr Magdalena Banach-Orłowska

Źródła:

https://www.zwrotnikraka.pl/swiatowy-dzien-walki-z-rakiem/

https://www.nhs.uk/conditions/eye-cancer/

https://www.cancerresearchuk.org/about-cancer/eye-cancer/treatment/decisions

https://academic.oup.com/jnci/article/113/1/80/5814932?login=false

https://www.nature.com/articles/s41467-018-04322-5

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824910/

https://www.ncbi.nlm.nih.gov/books/NBK576390/#article-140272.s2

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774148/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034991/

https://www.nhs.uk/conditions/retinoblastoma/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774148/