28.08.2023

Interferometria w spektroskopii w bliskiej podczerwieni

Optyka dyfuzyjna oferuje nieinwazyjne podejście do badania tkanek biologicznych, w tym ludzkiego mózgu in vivo [1]. Spektroskopia w bliskiej podczerwieni (NIRS) [2] i spektroskopia korelacyjna (DCS) są podstawowymi metodami optyki dyfuzyjnej [3, 4]. W obu podejściach światło oświetla tkankę, a rozproszone dyfuzyjnie fotony są zbierane w pewnej odległości od emitera (zwykle 2-3 cm). NIRS wykorzystuje wykryty sygnał do oszacowania właściwości optycznych (współczynnika absorpcji i zredukowanego współczynnika rozpraszania), podczas gdy DCS określa ilościowo przepływ krwi na podstawie czasowych zmian natężenia rejestrowanego światła. Chociaż metody te zostały zastosowane do monitorowania natlenienia mózgu i przepływu krwi, ich najczęściej stosowane wersje opierają się na laserach o ciągłej długości fali (CW), co wyklucza bezwzględne pomiary optycznych i dynamicznych właściwości tkanek [5].

NIRS w dziedzinie czasu (TD-NIRS) umożliwia kwantyfikację właściwości optycznych poprzez analizę rozkładu czasu przelotu fotonów w próbce (tak zwany rozkład czasu lotu, ang. time-of-flight, TOF) [9-12]. Zdolność tę można również połączyć ze spektroskopią korelacyjną w celu uzyskania informacji o przepływie krwi z rozdzielczością TOF (lub długością ścieżki fotonów). W ten sposób możemy lepiej odróżnić fotony przechodzące przez warstwy powierzchowne (krótkie TOF) od fotonów podróżujących w głąb mózgu (długie TOF). Ponadto, biorąc pod uwagę rozkład TOF, możemy oszacować właściwości optyczne w celu uzyskania bezwzględnego wskaźnika przepływu krwi (BFI), skutecznie łącząc możliwości TD-NIRS z DCS w jedną modalność. Takie podejście nazywa się spektroskopią korelacyjną w dziedzinie czasu (TD-DCS) [6, 7].

Interferometry in brain monitoring

Obraz: Zastosowanie interferometrii do monitorowania funkcji mózgu.

Chociaż TD-DCS jest skuteczną techniką stosowaną nawet w klinikach, opiera się ona tylko na natężeniu światła. Dlatego TD-DCS nie umożliwia wykrywania fazy optycznej [8]. Faza optyczna jest dostępna w interferometrycznej spektroskopii w bliskiej podczerwieni (ang. interferometric near-infrared spectroscopy, iNIRS) [9]. Technika iNIRS wykorzystuje interferometrię opartą na czasowo spójnym przestrajalnym laserze w celu osiągnięcia rozdzielczości TOF. W szczególności iNIRS uzupełnia konwencjonalną konfigurację NIRS o przestrajalne źródło światła i ramię referencyjne. Pole emitowane z próbki jest rekombinowane z polem referencyjnym. Częstotliwość dudnień sygnału koduje długości ścieżek fotonów (lub czasy przelotu). Krótkie ścieżki generują niższe częstotliwości dudnień niż długie ścieżki. W związku z tym rozkład czasu przelotu fotonów można uzyskać poprzez odwrotną transformację Fouriera zarejestrowanego sygnału (analogicznie jak w przypadku techniki OCT z laserem strojonym, ang. swept-source OCT). Jednak iNIRS dostarcza znacznie więcej informacji (w porównaniu z NIRS) dzięki dwuwymiarowej funkcji autokorelacji (ACF) reemitowanego pola optycznego. W iNIRS ACF jest mierzona jako funkcja opóźnienia czasowego z rozdzielczością TOF. Ten dwuwymiarowy pomiar (rysunek poniżej) koduje informacje o absorpcji, rozpraszaniu i indeksie przepływu krwi (BFI) w próbce.

iNIRS został zweryfikowany w fantomach tkanki biologicznej [9], mózgu myszy [10] i ludzkim mózgu in vivo [11]. Jednak oryginalny iNIRS (jak też DCS i TD-DCS) wykorzystuje światłowody jednomodowe do detekcji rozproszonego światła, wymagając czasów integracji 0,5-1 sekundy. Ten przedział czasowy jest zbyt długi, aby wykrywać szybkie zmiany przepływu krwi w ludzkim mózgu, które mogą być powiązane z sygnałami neuronowymi.

Aby przezwyciężyć te ograniczenia, niedawno zaproponowaliśmy równoległą interferometryczną spektroskopię w bliskiej podczerwieni (πNIRS). W πNIRS używamy światłowodów wielomodowych do zbierania rozproszonego światła i szybkiej, dwuwymiarowej kamery do rejestracji światła. Każdy piksel kamery działa efektywnie jako pojedynczy kanał iNIRS. Przetworzone sygnały z każdego piksela są więc uśredniane przestrzennie, aby skrócić całkowity czas integracji. Co więcej, detekcja interferometryczna zapewnia nam unikalną możliwość dostępu do zespolonej informacji (amplitudy i fazy) o świetle emitowanym z próbki, co przy ponad 8000 równoległych kanałów umożliwiło nam wykrycie mózgowego przepływu krwi przy czasie integracji wynoszącym zaledwie 10 ms (∼100x szybciej niż konwencjonalny iNIRS). Wykorzystaliśmy takie podejście do monitorowania pulsacyjnego przepływu krwi w ludzkim przedramieniu in vivo. Wykazaliśmy również, że podejście to może monitorować aktywację kory przedczołowej poprzez rejestrowanie zmian przepływu krwi w czole badanego podczas czytania nieznanego tekstu [12].

Tekst: dr habil. Dawid Borycki

Team:

dr habil. Dawid Borycki

dr Michał Dąbrowski

mgr inż. Klaudia Nowacka

Referencje:

  1. S. Samaei, P. Sawosz, M. Kacprzak, Z. Pastuszak, D. Borycki, and A. Liebert, „Time-domain diffuse correlation spectroscopy (TD-DCS) for noninvasive, depth-dependent blood flow quantification in human tissue in vivo,” Sci Rep 11, 1817 (2021).
  2. D. Borycki, O. Kholiqov, and V. J. Srinivasan, „Interferometric near-infrared spectroscopy directly quantifies optical field dynamics in turbid media,” Optica 3, 1471-1476 (2016).
  3. D. Borycki, O. Kholiqov, S. P. Chong, and V. J. Srinivasan, „Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media,” Opt Express 24, 329-354 (2016).
  4. D. Borycki, O. Kholiqov, and V. J. Srinivasan, „Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo,” Opt Lett 42, 591-594 (2017).
  5. S. Samaei, K. Nowacka, A. Gerega, Z. Pastuszak, and D. Borycki, „Continuous-wave parallel interferometric near-infrared spectroscopy (CW piNIRS) with a fast two-dimensional camera,” Biomed Opt Express 13, 5753-5774 (2022).

     

17.01.2023

Obrazowanie STOC-T (Spatio-Temporal Optical Coherence Tomography)

Konwencjonalna skanująca technika OCT (ang. Optical Coherence Tomography) łączy bramkowanie czasowe z konfokalnym, umożliwiając szybkie, wysokorozdzielcze obrazowanie przekrojowe ludzkiej siatkówki. Klasyczna OCT nie zapewnia jednak wysokiej rozdzielczości obrazów głębokich warstw siatkówki ze względu na aberracje oka i fundamentalny kompromis między głębokością obrazowania a rozdzielczością poprzeczną. 

Ten kompromis jest redukowany przez metodę pełnopolowej OCT (ang. Full-field OCT, FF-OCT), która wykorzystuje dwuwymiarową kamerę zamiast jednoelementowej fotodiody. Jednak próba zwiększenia szybkości obrazowania FF-OCT poprzez detekcję w dziedzinie Fouriera (FD) spowodowała kolejne poważne ograniczenie. Mianowicie, spójność przestrzenna lasera generuje koherentne artefakty, co zmniejsza rozdzielczość przestrzenną i, jak pokazano poniżej, wyklucza wizualizację głębokich warstw siatkówki. 

Aby rozwiązać ten problem, opracowaliśmy nowy sposób kontroli fazy optycznej nazwany STOC (Spatio-Temporal Optical Coherence). Zastosowanie STOC do pełnopolowej optycznej koherentnej tomografii Fouriera (FD-FF-OCT) nazwaliśmy tomografią STOC (STOC-T) lub obrazowaniem STOC. Nasza nowa metodaumożliwiła wysokorozdzielcze przyżyciowe wizualizowanie ludzkiej skóry, siatkówki i rogówki z niespotykanymi dotąd prędkościami (100 wolumenów na sekundę). 

W obrazowaniu STOC rozszerzyliśmy FD-FF-OCT o przestrzenny modulator fazy (ang. Spatial Phase Modulator, SPM). SPM dynamicznie moduluje fazę padającego światła poprzez generowanie zmiennych w czasie modów poprzecznych (ang. Transverse electromagnetic modes, TEMs). Jest to osiągane poprzez zastosowanie aktywnych modulatorów lub długich światłowodów wielomodowych. Powstałe w ten sposób sygnały są przetwarzane i uśredniane w celu uzyskania wolnych od szumów obrazów objętościowych próbki. Modulacja fazy działa tutaj jako dodatkowy mechanizm bramkowania optycznego, który izoluje użytecznych sygnał. W rezultacie otrzymujemy ulepszone obrazy próbki.

Jednakże obrazy en face (projekcje XY) są zniekształcone przez aberracje wywołane przez oko lub próbkę. Zwalczamy je w post-processingu za pomocą obliczeniowej korekcji aberracji (ang. Computational Aberration Correction, CAC). Algorytm CAC przebiega w sposób przedstawiony na rysunku. W szczególności, iteracyjnie (w komputerze) korygujemy fazę widma przestrzennego w celu optymalizacji metryki ostrości/jakości obrazu.  Aby uzyskać obrazy siatkówki w szerokim polu widzenia, wykonujemy pomiary w różnych miejscach, a następnie łączymy ze sobą wynikowe wolumeny, aby wyrenderować wysokiej rozdzielczości obrazy siatkówki na różnych głębokościach (wskazanych wcześniej). W szczególności, renderujemy naczyniówkę (choroid), co było niemożliwe w przypadku konwencjonalnego FF-OCT z domeną Fouriera (bez modulacji fazy).

Tekst: dr Dawid Borycki, e-mail: dborycki@ichf.edu.pl.

Zespół:

Egidijus Auksorius

Dawid Borycki

Piotr Węgrzyn

Kamil Liżewski

Marta Mikuła-Zdańkowska

Sławomir Tomczewski

Maciej Wojtkowski

Referencje:

  1. Borycki, D. et al., Control of the optical field coherence by spatiotemporal light modulation, Opt. Lett., 2013 38(22): p. 4817-4820.
  2. Borycki, D., et al., Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography. Biomed Opt Express, 2019. 10(4): p. 2032-2054.
  3. Stremplewski, P., et al., In vivo volumetric imaging by crosstalk-free full-field OCT. Optica, 2019. 6(5): p. 608-617.
  4. Auksorius, E., et al., Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography. Biomed Opt Express, 2019. 10(12): p. 6390-6407.
  5. Auksorius, E., et al., In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography. Biomed Opt Express, 2020. 11(5): p. 2849-2865.
  6. Borycki, D., et al., Computational aberration correction in spatiotemporal optical coherence (STOC) imaging. Opt Lett, 2020. 45(6): p. 1293-1296.
  7. Egidijus Auksorius, Dawid Borycki, Maciej Wojtkowski, Multimode fiber enables control of spatial coherence in Fourier-domain full-field optical coherence tomography for in vivo corneal imaging, Opt Lett, 2021. 46(6): p. 1413-1416.
  8. Auksorius E., et al., Spatio-Temporal Optical Coherence Tomography provides advanced imaging of the human retina and choroid, arXiv preprint arXiv:2107.10672 (2021).
  9. Auksorius E., Fourier-domain full-field optical coherence tomography with real-time axial imaging, Opt Lett, 2021., Vol. 46(18): p. 4478-4481.
  10. Auksorius E., et al., Multimode fiber as a tool to reduce cross talk in Fourier-domain full-field optical coherence tomography. Opt Lett, 2022. 47(4): p. 838-841.
  11. Tomczewski S., et al., Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system. Biomed Opt Express, 2022 13(4): p. 2186-2201.
  12. Auksorius, E., et al., Spatio-temporal optical coherence tomography provides full thickness imaging of the chorioretinal complex. iScience, 2022 25(12) 105513.
18.07.2022

Projekt Maestro finansowany przez NCN: odkrycie nowej metody STOC-T do obrazowania

W ramach projektu zaproponowaliśmy nowe podejście do kontroli spójności światła używanego w obrazowaniu. Ten nowatorski pomysł, który zweryfikowaliśmy eksperymentalnie, został wykorzystany do obrazowania skóry, rogówki i siatkówki ludzkiego oka in vivo. W efekcie stworzyliśmy nową metodę obrazowania obiektów biologicznych, którą nazwaliśmy przestrzenno-czasową tomografią optyczną (ang. spatio-temporal optical coherence tomography (STOC-T)).

W naszych pracach przeprowadziliśmy badania podstawowe wprowadzając specyficzny opis zjawiska rozpraszania światła z wykorzystaniem jego własności statystycznych (spójność przestrzenna i czasowa). Zaproponowaliśmy eksperymenty weryfikujące poprawność wprowadzonego modelu. Z układu eksperymentalnego powstał również układ laboratoryjny demonstrujący możliwości nowej metody w obrazowaniu biomedycznym. Pokazaliśmy możliwości zastosowania nowej metody do obrazowania przyżyciowego, co potwierdziło poprawność tez postawionych w tym projekcie. 

Praktyczne skutki naszych badań zademonstrowaliśmy na przykładzie obrazowania oka ludzkiego. W przypadku obrazowania rogówki dzięki STOC-T mogliśmy znacząco wydłużyć czas ekspozycji nie narażając położonej głębiej, delikatnej siatkówki. Jednocześnie pozwala nam to na zachowanie wysokiej wartości mocy światła, która pozwala na zobaczenie bardzo słabego rozproszenia wstecznego od rogówki. Dodatkowo objętościowy charakter zbieranych danych pozwolił na optyczne „spłaszczenie” krzywizny rogówki i uzyskanie wyjątkowo ostrych obrazów wszystkich tworzących ją warstw w całym przekroju. To niełatwa sztuka, bo przejrzystość rogówki, choć pozwala na zaglądanie do wnętrza oka, wcale nie ułatwia badania jej samej.

W przypadku obrazowania siatkówki pokazaliśmy, że możemy przeniknąć głębiej do obszarów pod siatkówką, których nie można było dotąd obrazować. Zastosowanie STOC-T do obrazowania siatkówki pozwoliło nam w szczególności na rekonstrukcję morfologii czopków w ludzkim oku. Ponadto, dzięki zastosowaniu superszybkiej kamery rejestrującej dziesiątki tysięcy klatek na sekundę, możemy błyskawicznie rejestrować obrazy.  Nasza metoda STOC-T pozwala na uchwycenie siatkówki w ułamku sekundy i zarejestrowanie całej jej głębi w niezwykle wysokiej, niespotykanej dotąd rozdzielczości. Pacjent nie zdąży nawet mrugnąć, a jego oko już jest zobrazowane i to z dokładnością pozwalającą oglądać nawet pojedyncze komórki. A gdyby nawet poruszył okiem, urządzenie, a raczej komputer, skompensuje ten ruch, wciąż dając ostry obraz. Do tego nasz aparat nie ma ruchomych części, a dzięki modulacji fazy wiązki laserowej możemy wykorzystywać większe moce bez szkody dla głębiej położonych tkanek oka.

Tekst: prof. Maciej Wojtkowski and dr Dawid Borycki