Andrea Curatolo, PhD
PhD, The University of Western Australia
Group Leader
Biomedical Imaging
Andrea Curatolo is an expert in biomedical imaging, especially in optical coherence tomography (OCT) and derived techniques to enhance diagnostic accuracy and guide surgery, aimed at improved health outcomes, mainly in ophthalmology and oncology. Dr Curatolo obtained a PhD in biophotonics at The University of Western Australia.
He is an author of more than 30 publications in Q1 peer-reviewed international journals, including three book chapters. He is also involved in the clinical translation and commercialization of biophotonics technologies; he has authored several patent applications, and he is engaged in collaborations with MedTech startups.
Publication list:
[1] P. Wegrzyn, S. Tomczewski, D. Borycki, W. Kulesza, M. Wielgo, K. Kordecka, A. Galińska, O. Cetinkaya, P. Ciąćka, E. Auksorius, A. Foik, R. Zawadzki, M. Wojtkowski, and A. Curatolo, High-speed, in vivo, volumetric imaging of mouse retinal tissue with spatio-temporal optical coherence tomography (STOC-T) (SPIE BiOS). SPIE, 2023.
[2] M. P. Urizar, A. de Castro, E. Gambra, Á. de la Peña, O. Cetinkaya, S. Marcos, and A. Curatolo, Long-range frequency-domain optical delay line based on a spinning tilted mirror for low-cost ocular biometry (SPIE BiOS). SPIE, 2023.
[3] S. Tomczewski, P. Wegrzyn, D. Borycki, M. Wielgo, A. Curatolo, and M. Wojtkowski, Frequency characterization of human photoreceptors’ response to light with the use of chirped flicker stimulus optoretinography (SPIE BiOS). SPIE, 2023.
[4] E. Martínez-Enríquez, A. Curatolo, A. de Castro, J. S. Birkenfeld, A. M. González, A. Mohamed, M. Ruggeri, F. Manns, Z. Fernando, and S. Marcos, “Estimation of the full shape of the crystalline lens in-vivo from OCT images using eigenlenses,” Biomedical Optics Express, vol. 14, no. 2, pp. 608-626, 2023/02/01 2023.
[5] W. Kulesza, K. Łuczkiewicz, P. Węgrzyn, S. Tomczewski, D. Borycki, P. Ciąćka, O. Cetinkaya, M. Wielgo, K. Kordecka, A. Galińska, E. Auksorius, A. Foik, R. Zawadzki, M. Wojtkowski, and A. Curatolo, Spatio-temporal optical coherence tomography (STOC-T) focal plane adjustment in the mouse retina aided by a fundus camera (SPIE BiOS). SPIE, 2023.
[6] K. Gromada, B. Piotrowski, P. Ciąćka, A. Kurek, and A. Curatolo, Improved tool tracking algorithm for eye surgery based on combined color space masks (SPIE Medical Imaging). SPIE, 2023.
[7] Q. Fang, R. Sanderson, S. Choi, A. Taba, A. Curatolo, D. Lakhiani, R. Zilkens, K. Newman, B. Dessauvagie, H. DeJong, F. Wood, C. Saunders, and B. Kennedy, Low-resource and cost-effective camera-based optical palpation for breast cancer detection and burn scar assessment (Conference Presentation) (SPIE BiOS). SPIE, 2023.
[8] P. Ciąćka, K. Karnowski, and A. Curatolo, “Intraoperative ophthalmic OCT system tracking surgical tools at 200 Hz,” presented at the SPIE BiOS, San Francisco, USA, 6 March 2023, 2023. [Online]. Available: https://doi.org/10.1117/12.2649761.
[9] J. Birkenfeld, A. Curatolo, A. Eliasy, A. Varea, E. Martinez Enriquez, B. Lopes Teixeira, A. Abass, N. Alejandre-Alba, J. Merayo-Lloves, A. Elsheikh, and S. Marcos, Cross-meridian air-puff deformation OCT for improved detection of early stage keratoconus (SPIE BiOS). SPIE, 2023.
[10] F. Zvietcovich, J. Birkenfeld, A. Varea, A. M. Gonzalez, A. Curatolo, and S. Marcos, “Multi-meridian wave-based corneal optical coherence elastography in normal and keratoconic patients,” Investigative Ophthalmology & Visual Science, vol. 63, no. 7, pp. 2380 – A0183-2380 – A0183, 2022.
[11] P. Węgrzyn, D. Borycki, S. Tomczewski, K. Liżewski, E. Auksorius, A. Curatolo, and M. Wojtkowski, “Functional and Structural Imaging of Retinal Tissue with Spatio-Temporal Optical Coherence Tomography (STOC-T),” in Frontiers in Optics + Laser Science 2022 (FIO, LS), Rochester, New York, 2022/10/17 2022: Optica Publishing Group, in Technical Digest Series, p. FW7D.2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=FiO-2022-FW7D.2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=FiO-2022-FW7D.2
[12] M. P. Urizar, A. de Castro, E. Gambra, O. Cetinkaya, S. Marcos, and A. Curatolo, “Design of a low-cost, versatile, whole-eye scanner for optical coherence tomography,” in Biophotonics Congress: Biomedical Optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), Fort Lauderdale, Florida, 2022/04/24 2022: Optica Publishing Group, in Technical Digest Series, p. CS2E.5. [Online]. Available: http://opg.optica.org/abstract.cfm?URI=OCT-2022-CS2E.5. [Online]. Available: http://opg.optica.org/abstract.cfm?URI=OCT-2022-CS2E.5
[13] S. Tomczewski, P. Wegrzyn, D. Borycki, A. Curatolo, and M. Wojtkowski, “In vivo frequency characterization of human photoreceptors response to a flicker stimulus with optoretinography,” in Biophotonics Congress: Biomedical Optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), Fort Lauderdale, Florida, 2022/04/24 2022: Optica Publishing Group, in Technical Digest Series, p. CS3E.1. [Online]. Available: http://opg.optica.org/abstract.cfm?URI=OCT-2022-CS3E.1. [Online]. Available: http://opg.optica.org/abstract.cfm?URI=OCT-2022-CS3E.1
[14] S. Tomczewski, P. Węgrzyn, D. Borycki, E. Auksorius, M. Wojtkowski, and A. Curatolo, “Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system,” Biomedical Optics Express, vol. 13, no. 4, pp. 2186-2201, 2022/04/01 2022.
[15] R. McAuley, A. Nolan, A. Curatolo, S. Alexandrov, F. Zvietcovich, A. Varea Bejar, S. Marcos, M. Leahy, and J. S. Birkenfeld, “Co-axial acoustic-based optical coherence vibrometry probe for the quantification of resonance frequency modes in ocular tissue,” Scientific Reports, vol. 12, no. 1, p. 18834, 2022/11/06 2022.
[16] R. McAuley, A. Nolan, A. Curatolo, S. Alexandrov, F. Zvietcovich, A. Varea, S. Marcos, J. S. Birkenfeld, and M. Leahy, “Hysteresis in vibrational resonance modes of model corneas measured with Optical Coherence Tomography Vibrography utilizing a co-axial acoustic stimulation technique and pre-compensation,” in Biophotonics Congress: Biomedical Optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), Fort Lauderdale, Florida, 2022/04/24 2022: Optica Publishing Group, in Technical Digest Series, p. CTu4E.4. [Online]. Available: http://opg.optica.org/abstract.cfm?URI=OCT-2022-CTu4E.4. [Online]. Available: http://opg.optica.org/abstract.cfm?URI=OCT-2022-CTu4E.4
[17] R. McAuley, A. Nolan, A. Curatolo, S. Alexandrov, S. Marcos, M. Leahy, and J. Birkenfeld, A novel co-axial and acoustic pre-compensation approach for tissue excitation in optical coherence tomography vibrography (SPIE BiOS). SPIE, 2022.
[18] E. Martinez-Enriquez, A. Curatolo, J. S. Birkenfeld, A. M. Gonzalez, A. de Castro, A. Mohamed, M. Ruggeri, F. Manns, and S. Marcos, “Estimation of the full shape of the crystalline lens from optical coherence tomography images using Eigenlenses,” Investigative Ophthalmology & Visual Science, vol. 63, no. 7, pp. 3071 – F0543-3071 – F0543, 2022.
[19] B. Kennedy, B. Krajancich, Q. Fang, and A. Curatolo, “A method of volumetric imaging of a sample,” 2022.
[20] K. Karnowski, J. Milkiewicz, A. Pachacz, A. Curatolo, O. Cetinkaya, R. Pietruch, A. Consejo, M. M. Bartuzel, P. Ciąćka, A. Eliasy, A. Abass, A. Elsheikh, S. Marcos, and M. Wojtkowski, “Simultaneous multi-spot OCT measurements of air induced corneal deformations,” in Biophotonics Congress: Biomedical Optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), Fort Lauderdale, Florida, 2022/04/24 2022: Optica Publishing Group, in Technical Digest Series, p. CW3E.3. [Online]. Available: http://opg.optica.org/abstract.cfm?URI=OCT-2022-CW3E.3. [Online]. Available: http://opg.optica.org/abstract.cfm?URI=OCT-2022-CW3E.3
[21] K. Karnowski, J. Milkiewicz, A. Pachacz, A. Curatolo, O. Cetinkaya, R. Pietruch, P. Ciacka, A. Eliasy, A. Abass, A. Elsheikh, S. Marcos, and M. Wojtkowski, Air puff-coupled multi-spot OCT for assessment of asymmetries in corneal biomechanics (SPIE BiOS). SPIE, 2022.
[22] A. Curatolo, S. Tomczewski, P. Wegrzyn, D. Borycki, E. Auksorius, and M. Wojtkowski, Towards spatially mapped frequency response of human photoreceptor length variation with flicker optoretinography (SPIE BiOS). SPIE, 2022.
[23] J. S. Birkenfeld, A. Varea, A. Curatolo, A. Eliasy, A. M. Gonzalez, E. Martinez-Enriquez, A. Abass, B. Lopes, A. Elsheikh, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical parameters in healthy and early-stage keratoconus eyes from cross-meridian air-puff deformation OCT,” Investigative Ophthalmology & Visual Science, vol. 63, no. 7, pp. 2394 – A0197-2394 – A0197, 2022.
[24] J. Birkenfeld, A. Curatolo, A. Eliasy, E. Martinez-Enriquez, A. Varea, A. M. Gonzalez Ramos, A. Abass, B. Lopes Teixeira, J. Merayo-Lloves, A. Elsheikh, and S. Marcos, Corneal biomechanical parameters of keratoconus patients from cross-meridian air-puff deformation optical coherence tomography and finite element modeling (SPIE BiOS). SPIE, 2022.
[25] M. P. Urizar, A. de Castro, E. Gambra, and A. Curatolo, “Design of a robust long-range optical delay line for low-cost ocular biometry,” presented at the IONS-21 Conference, Dublin, Ireland, 2021.
[26] R. W. Sanderson, Q. Fang, A. Curatolo, A. Taba, H. M. DeJong, F. M. Wood, and B. F. Kennedy, “Smartphone-based optical palpation: towards elastography of skin for telehealth applications,” Biomedical Optics Express, vol. 12, no. 6, pp. 3117-3132, 2021/06/01 2021.
[27] R. W. Sanderson, Q. Fang, A. Curatolo, and B. F. Kennedy, “Optical Coherence Elastography Imaging Probes,” in Optical Coherence Elastography, 2021, pp. 10-1-10-28.
[28] K. Karnowski, J. Solarski, A. Curatolo, A. Pachacz, O. Cetinkaya, A. Consejo, S. Marcos, and M. Wojtkowski, Corrections of axial shift artifact in dynamic swept-source optical coherence tomography (SPIE BiOS). SPIE, 2021.
[29] M. S. Hepburn, K. Y. Foo, A. Curatolo, P. R. T. Munro, and B. F. Kennedy, “Speckle in Optical Coherence Tomography,” in Optical Coherence Elastography, 2021, pp. 4-1-4-29.
[30] A. De Castro, E. Martinez-Enriquez, G. Muralidharan, A. Curatolo, and S. Marcos, “Effect of fixational eye movements in corneal topography measurement with OCT,” in Investigative Ophthalmology & Visual Science, 2021, vol. 61, no. 7, pp. 4747-4747.
[31] A. Curatolo, A. Pachacz, J. Solarski, O. Cetinkaya, A. Consejo, S. Marcos, M. Wojtkowski, and K. Karnowski, “Corrections of motion artifacts in dynamic low-cost, swept-source optical coherence tomography,” in Biophotonics Congress 2021, Washington, DC, 2021/04/12 2021: Optical Society of America, in OSA Technical Digest, p. DTh1A.4. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=BODA-2021-DTh1A.4. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=BODA-2021-DTh1A.4
[32] D. Bronte-Ciriza, J. S. Birkenfeld, A. de la Hoz, A. Curatolo, J. A. Germann, L. Villegas, A. Varea, E. Martínez-Enríquez, and S. Marcos, “Estimation of scleral mechanical properties from air-puff optical coherence tomography,” Biomedical Optics Express, vol. 12, no. 10, pp. 6341-6359, 2021/10/01 2021.
[33] J. S. Birkenfeld, A. Curatolo, A. Eliasy, E. Martinez-Enriquez, A. Varea, A. Gonzalez-Ramos, A. Abass, B. T. Lopes, J. Merayo-Lloves, A. Elsheikh, and S. Marcos, “Improved detection of corneal deformation asymmetries in keratoconus patients using multi-meridian deformation imaging,” Investigative Ophthalmology & Visual Science, vol. 62, no. 8, pp. 2031-2031, 2021.
[34] J. S. Birkenfeld, D. Bronte-Ciriza, A. de la Hoz, A. Curatolo, L. Villegas, J. A. Germann, A. Varea, E. Martínez-Enríquez, and S. Marcos, “Method to Estimate Scleral Mechanical Properties from Air-Puff Optical Coherence Tomography: a Proof-of-Concept,” in European Conferences on Biomedical Optics 2021 (ECBO), Munich, 2021/06/20 2021: Optical Society of America, in OSA Technical Digest, p. ETh2B.2. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=ECBO-2021-ETh2B.2. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=ECBO-2021-ETh2B.2
[35] J. Birkenfeld, A. Abass, S. Alexandrov, D. Bronte-Ciriza, A. Curatolo, A. Eliasy, J. German, A. Ramos, A. de la Hoz, K. Karnowski, B. L. Teixeira, E. Martinez-Enriquez, R. McAuley, A. Nolan, J. Solarski, A. Varea, L. Villegas, A. Elsheikh, M. Leahy, J. Merayo-Lloves, M. Wojtkowski, and S. Marcos, “Applications of the ImTOPScanner for the investigation of ocular biomechanical parameters,” presented at the XIII Spanish National Meeting on Optics, 22-24 November 2021, 2021.
[36] N. Uribe-Patarroyo, J. S. Birkenfeld, A. Curatolo, T. M. Cannon, J. A. Germann, M. Villiger, S. Marcos, and B. E. Bouma, “Assessing collagen microstructural changes in an ex vivo keratoconic eye model with Stokes polarization-sensitive optical coherence tomography,” in Investigative Ophthalmology & Visual Science, 2020, vol. 61, no. 7, pp. 2532-2532. [Online]. Available: https://iovs.arvojournals.org/article.aspx?articleid=2770017. [Online]. Available: https://iovs.arvojournals.org/article.aspx?articleid=2770017
[37] R. W. Sanderson, Q. Fang, A. Curatolo, W. Adams, D. D. Lakhiani, H. M. Ismail, K. Y. Foo, B. F. Dessauvagie, B. Latham, C. Yeomans, C. M. Saunders, and B. F. Kennedy, “Camera-based optical palpation,” Scientific Reports, vol. 10, no. 1, p. 15951, 2020/09/29 2020.
[38] K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy. “Diagnostic Accuracy of Quantitative Micro-Elastography for Margin Assessment in Breast-Conserving Surgery.” http://www.octnews.org/articles/9637115/feature-of-the-week-04-26-2020-diagnostic-accuracy/ (accessed 26/04/2020.
[39] K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic Accuracy of Quantitative Micro-Elastography for Margin Assessment in Breast-Conserving Surgery,” Cancer Research, vol. 80, no. 8, pp. 1773-1783, 2020.
[40] Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” Journal of Biophotonics, vol. 13, no. 6, p. e201960196, 2020.
[41] A. Curatolo, S. Marcos, J. Birkenfeld, M. Wojtkowski, K. Karnowski, A. Elsheikh, A. Abass, and A. Eliasy, “System and method for obtaining biomechanical parameters of ocular tissue through deformation of the ocular tissue,” 2020.
[42] A. Curatolo, J. S. Birkenfeld, E. Martinez-Enriquez, J. A. Germann, J. Palací, D. Pascual, G. Muralidharan, A. Eliasy, A. Abass, J. Solarski, K. Karnowski, M. Wojtkowski, A. Elsheikh, and S. Marcos, “Detecting deformation asymmetries on multiple meridians in an ex vivo keratoconic eye model,” in Investigative Ophthalmology & Visual Science, 2020, vol. 61, no. 7, pp. 4723-4723.
[43] A. Curatolo, J. S. Birkenfeld, E. Martinez-Enriquez, J. A. Germann, G. Muralidharan, J. Palací, D. Pascual, A. Eliasy, A. Abass, J. Solarski, K. Karnowski, M. Wojtkowski, A. Elsheikh, and S. Marcos, “Multi-meridian corneal imaging of air-puff induced deformation for improved detection of biomechanical abnormalities,” Biomedical Optics Express, vol. 11, no. 11, pp. 6337-6355, 2020/11/01 2020.
[44] A. Curatolo, J. S. Birkenfeld, E. Martinez-Enriquez, J. Germann, J. Palací, D. Pascual, G. Muralidharan, J. Solarski, K. Karnowski, M. Wojtkowski, and S. Marcos, “Customized swept-source optical coherence tomography system for air-puff induced corneal deformation imaging on multiple meridians (Conference Presentation),” Photonics West BiOS, vol. 11218, 2020.
[45] A. Curatolo, J. Birkenfeld, E. Martinez-Enriquez, J. Germann, A. Eliasy, A. Abass, J. Solarski, K. Karnowski, M. Wojtkowski, A. Elsheikh, and S. Marcos, “High-frame rate multi-meridian corneal imaging of air-puff induced deformation for improved detection of keratoconus (Invited),” presented at the Industrialization Potential of Optics in Biomedicine, Warsaw – online, 2020.
[46] J. S. Birkenfeld, A. Varea, J. A. Germann, A. de Castro, A. Curatolo, and S. Marcos, “Development, evaluation and application of corneal models with localized biomechanical changes,” [Manuscript in preparation], 2020.
[47] J. S. Birkenfeld, A. Curatolo, A. Nolan, R. McAuley, A. Abass, A. Eliasy, M. Leahy, A. Elsheikh, and S. Marcos, “Investigation of the corneal frequency response to modulated sound excitation,” in Investigative Ophthalmology & Visual Science, 2020, vol. 61, no. 7, pp. 4717-4717.
[48] R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomedical Optics Express, vol. 10, no. 4, pp. 1760-1773, 2019/04/01 2019.
[49] R. Sanderson, P. Wijesinghe, A. Curatolo, L. Chin, and B. Kennedy, A finger-mounted palpation-mimicking probe for optical coherence elastography (Conference Presentation) (SPIE BiOS). SPIE, 2019.
[50] G. Muralidharan, J. S. Birkenfeld, M. Vinas, A. Curatolo, E. Martinez-Enriquez, A. De Castro, and S. Marcos, “Crystalline lens accommodation through multifocal corrections,” in Investigative Ophthalmology & Visual Science, 2019, vol. 60, no. 9, pp. 1803-1803.
[51] B. Krajancich, A. Curatolo, Q. Fang, R. Zilkens, B. F. Dessauvagie, C. M. Saunders, and B. F. Kennedy, “Handheld optical palpation of turbid tissue with motion-artifact correction,” Biomedical Optics Express, vol. 10, no. 1, pp. 226-241, 2019/01/01 2019.
[52] Q. Fang, B. Krajancich, L. Chin, R. Zilkens, A. Curatolo, L. Frewer, J. D. Anstie, P. Wijesinghe, C. Hall, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld probe for quantitative micro-elastography,” Biomedical Optics Express, vol. 10, no. 8, pp. 4034-4049, 2019/08/01 2019.
[53] J. S. Birkenfeld, J. A. Germann, A. De Castro, A. De la Hoz, A. Curatolo, and S. Marcos, “Assessment of asymmetries in biomechanical properties from corneal deformation imaging,” in Investigative Ophthalmology & Visual Science, 2019, vol. 60, no. 9, pp. 6809-6809.
[54] J. Anstie, B. Krajancich, L. Chin, L. Frewer, Q. Fang, P. Wijesinghe, A. Curatolo, and B. Kennedy, Manual compression for hand-held 3D quantitative micro-elastography of human breast tissue (Conference Presentation) (SPIE BiOS). SPIE, 2019.
[55] C. M. Saunders, L. Watts, W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, and B. Kennedy, “Importance of breast tumour margins and how to measure them effectively,” in The Breast, 2018, vol. 38: Elsevier, p. 191, doi: 10.1016/j.breast.2018.02.006. [Online]. Available: https://doi.org/10.1016/j.breast.2018.02.006
[56] P. Ossowski, A. Curatolo, D. D. Sampson, and P. R. T. Munro, “Accurate Representation of Microscopic Scatterers in Realistic Simulation of OCT Image Formation,” in 2018 IEEE Photonics Conference (IPC), 30 Sept.-4 Oct. 2018 2018, pp. 1-2, doi: 10.1109/IPCon.2018.8527134.
[57] P. Ossowski, A. Curatolo, D. D. Sampson, and P. R. T. Munro, “Realistic simulation and experiment reveals the importance of scatterer microstructure in optical coherence tomography image formation,” Biomedical Optics Express, vol. 9, no. 7, pp. 3122-3136, 2018/07/01 2018.
[58] A. Curatolo, J. S. Birkenfeld, J. Germann, A. De Castro, G. Muralidharan, M. Velasco, E. Martinez-Enriquez, and S. Marcos, “Customised optical coherence tomography system for corneal deformation imaging on multiple meridians,” XII Reunión Nacional de Óptica, Ciencias de la Visión, 2018.
[59] W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, R. Zilkens, S. L. Chin, B. Latham, B. F. Dessauvagie, C. M. Saunders, and B. F. Kennedy, “Quantitative Micro-Elastography for Tumor Margin Assessment,” Optics and Photonics News, vol. 29, no. 12, p. 47, 2018.
[60] W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomedical Optics Express, vol. 9, no. 3, pp. 1082-1096, 2018/03/01 2018.
[61] P. Wijesinghe, N. J. Johansen, A. Curatolo, D. D. Sampson, R. Ganss, and B. F. Kennedy, “Optical coherence elastography for cellular-scale stiffness imaging of mouse aorta,” in International Conference on Biophotonics V, 2017, vol. 10340: SPIE, p. 1.
[62] P. Wijesinghe, N. J. Johansen, A. Curatolo, D. D. Sampson, R. Ganss, and B. F. Kennedy, “Ultrahigh-Resolution Optical Coherence Elastography Images Cellular-Scale Stiffness of Mouse Aorta,” Biophysical Journal, vol. 113, no. 11, pp. 2540-2551, 2017/12/05/ 2017.
[63] P. Wijesinghe, N. Johansen, A. Curatolo, D. Sampson, R. Ganss, and B. Kennedy, Optical coherence elastography for cellular-scale stiffness imaging of mouse aorta (International Conference on Biophotonics V). SPIE, 2017.
[64] Q. Fang, L. Frewer, P. Wijesinghe, J. Hamzah, R. Ganss, W. M. Allen, D. D. Sampson, A. Curatolo, and B. F. Kennedy, “Dual-scanning optical coherence elastography for rapid imaging of two tissue volumes (Conference Presentation),” in SPIE BiOS, 2017, vol. 10067: SPIE, p. 1.
[65] Q. Fang, L. Frewer, P. Wijesinghe, J. Hamzah, R. Ganss, W. Allen, D. Sampson, A. Curatolo, and B. Kennedy, Dual-scanning optical coherence elastography for rapid imaging of two tissue volumes (Conference Presentation) (SPIE BiOS). SPIE, 2017.
[66] Q. Fang, L. Frewer, P. Wijesinghe, W. M. Allen, L. Chin, J. Hamzah, D. D. Sampson, A. Curatolo, and B. F. Kennedy, “Depth-encoded optical coherence elastography for simultaneous volumetric imaging of two tissue faces,” Optics Letters, vol. 42, no. 7, pp. 1233-1236, 2017/04/01 2017.
[67] Q. Fang, A. Curatolo, P. Wijesinghe, Y. L. Yeow, J. Hamzah, P. B. Noble, K. Karnowski, D. D. Sampson, R. Ganss, J. K. Kim, W. M. Lee, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics,” Biomedical Optics Express, vol. 8, no. 11, pp. 5127-5138, 2017/11/01 2017.
[68] Q. Fang, A. Curatolo, P. Wijesinghe, J. Hamzah, R. Ganss, P. B. Noble, K. Karnowski, D. D. Sampson, J. K. Kim, W. M. Lee, and B. F. Kennedy, “Ultrahigh resolution optical coherence elastography combined with a rigid micro-endoscope (Conference Presentation),” in SPIE BiOS, 2017, vol. 10053: SPIE, p. 1.
[69] Q. Fang, A. Curatolo, P. Wijesinghe, J. Hamzah, R. Ganss, P. Noble, K. Karnowski, D. Sampson, J. K. Kim, W. Lee, and B. Kennedy, Ultrahigh resolution optical coherence elastography combined with a rigid micro-endoscope (Conference Presentation) (SPIE BiOS). SPIE, 2017.
[70] A. Curatolo, “Characterising and improving image quality in optical coherence tomography and elastography by means of optical beam shaping and simulations,” PhD, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Australia, 2017. [Online]. Available: https://research-repository.uwa.edu.au/en/publications/characterising-and-improving-image-quality-in-optical-coherence-t
[71] P. R. T. Munro, A. Curatolo, and D. D. Sampson, “Rigorous simulation of OCT image formation using Maxwell’s equations in three dimensions (Conference Presentation),” in SPIE BiOS, 2016, vol. 9697: SPIE, p. 1.
[72] P. R. T. Munro, A. Curatolo, and D. D. Sampson, “A model of optical coherence tomography image formation based on Maxwell’s equations,” in 2016 IEEE Photonics Conference (IPC), Hawaii, USA, 2-6 Oct. 2016 2016, pp. 134-135, doi: 10.1109/IPCon.2016.7831012.
[73] P. R. Munro, A. Curatolo, and D. Sampson, Rigorous simulation of OCT image formation using Maxwell’s equations in three dimensions (Conference Presentation) (SPIE BiOS). SPIE, 2016.
[74] B. F. Kennedy, P. Wijesinghe, L. Chin, A. Curatolo, S. Es’haghian, W. M. Allen, L. Frewer, A. Arabshahi, K. Karnowski, and D. D. Sampson, “Compression optical coherence elastography for improved diagnosis of disease (Conference Presentation),” in SPIE BiOS, 2016, vol. 9710: SPIE, p. 1.
[75] B. Kennedy, P. Wijesinghe, L. Chin, A. Curatolo, S. Es’haghian, W. Allen, L. Frewer, A. Arabshahi, K. Karnowski, and D. Sampson, Compression optical coherence elastography for improved diagnosis of disease (Conference Presentation) (SPIE BiOS). SPIE, 2016.
[76] A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field,” in SPIE BiOS, 2016, vol. 9697: SPIE, p. 8, doi: 10.1117/12.2214684.
[77] A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Optics Letters, vol. 41, no. 1, pp. 21-24, 2016/01/01 2016.
[78] A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Scientific Reports, Article vol. 6, p. 23483, 03/24/online 2016.
[79] P. R. T. M. S. A. A. C. D. D. Sampson, “Three dimensional modelling of broadband optical imaging systems using an electromagnetic description of light,” in SPIE Photonics West, San Francisco, USA, 2015.
[80] L. C. P. W. A. C. K. M. K. M. V. R. A. M. B. F. K. D. D. Sampson, “Improving resolution and strain sensitivity in phase-sensitive compression optical coherence elastography ” in SPIE Photonics West, San Francisco, USA, 2015.
[81] P. R. T. Munro, A. Curatolo, and D. D. Sampson, “Full wave model of image formation in optical coherence tomography applicable to general samples,” Optics Express, vol. 23, no. 3, pp. 2541-2556, 2015/02/09 2015.
[82] C. Lixin, A. Curatolo, P. Wijesinghe, K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, and D. D. Sampson, “Sensitivity and resolution in optical coherence micro-elastography,” in 2015 IEEE Photonics Conference (IPC), 4-8 Oct. 2015 2015, pp. 1-2, doi: 10.1109/IPCon.2015.7323503.
[83] B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Research, vol. 75, no. 16, pp. 3236-3245, 2015.
[84] A. Curatolo, M. Villiger, D. Lorenser, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Cellular resolution optical elastography using phase-sensitive extended depth-of-field optical coherence microscopy,” in SPIE Photonics West, San Francisco, USA, 2015.
[85] A. Curatolo, P. R. T. Munro, P. Sreekumar, C. C. Singe, B. F. Kennedy, D. Lorenser, and D. D. Sampson, “Effect on optical coherence tomography image quality of turbid tissue scattering using Gaussian or Bessel beams,” in SPIE European Conference on Biomedical Optics, Munich, Germany, 2015.
[86] A. Curatolo, D. Lorenser, P. R. T. Munro, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, “Analysis of beam shaping in optical coherence tomography in the presence of sample-induced aberrations and scattering,” in SPIE Photonics West, San Francisco, USA, 2015.
[87] D. L. C. C. S. A. C. S. H. D. D. Sampson, “Extended depth-of-focus OCT imaging using energy-efficient low-Fresnel number Bessel-like beams,” in SPIE Photonics West, San Francisco, USA, 2014.
[88] D. Lorenser, C. Christian Singe, A. Curatolo, and D. D. Sampson, “Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography,” Optics Letters, vol. 39, no. 3, pp. 548-551, 2014/02/01 2014.
[89] B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomedical Optics Express, vol. 5, no. 7, pp. 2113-2124, 2014/07/01 2014.
[90] L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomedical Optics Express, vol. 5, no. 9, pp. 2913-2930, 2014/09/01 2014.
[91] L. C. Brendan F Kennedy, Kelsey M Kennedy, Philip Wijesinghe, Andrea Curatolo, Shaghayegh Es’ haghian, Peter RT Munro, Robert A McLaughlin, David Sampson. (2014, December 2014) A new window into disease. Optics and Photonics News. 1. Available: https://www.osa-opn.org/home/articles/volume_25/december_2014/extras/a_new_window_into_disease/
[92] P. R. T. M. A. C. L. C. B. F. K. D. D. Sampson, “A computational model of partially coherent imaging systems employing an electromagnetic description of light,” in Australian and New Zealand Conference on Optics And Photonics, Perth, Western Australia, 2013.
[93] L. C. A. C. B. F. K. B. D. P. R. T. M. R. A. M. D. D. Sampson, “A computational model of the mechanical deformation and optical image formation in optical coherence elastography,” in Australian and New Zealand Conference on Optics And Photonics, Perth, Western Australia, 2013.
[94] D. L. C. C. S. A. C. S. R. H. D. D. Sampson, “Energy-efficient achromatic low-Fresnel number Bessel-like beams for optical imaging generated using a spatial light modulator,” in Australian and New Zealand Conference on Optics And Photonics, Perth, Western Australia, 2013.
[95] A. C. B. F. K. T. R. H. D. D. Sampson, “Speckle in optical coherence tomography: simulation and experiment with a structured phantom,” in The 6th International Graduate summer school Biophotonics Ven, Sweden, 2013.
[96] B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Improved imaging of breast cancer using optical coherence elastography,” in SPIE Photonics West, BiOS: Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVII San Francisco, USA, 2013, no. 8571-68.
[97] B. F. Kennedy, G. Lamouche, C.-E. Bisaillon, K. M. Kennedy, A. Curatolo, G. Campbell, and D. D. Sampson, “Tissue simulating phantoms for optical coherence tomography,” in SPIE Photonics West, BiOS: Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V San Francisco, USA, 2013, no. 8583-19.
[98] A. Curatolo, C. C. Singe, D. Lorenser, P. R. T. Munro, and D. D. Sampson, “Improving OCT image quality in turbid structured phantoms by beam shaping,” in Australian and New Zealand Conference on Optics And Photonics, Perth, Western Australia, 2013.
[99] A. Curatolo, B. F. Kennedy, D. D. Sampson, and T. R. Hillman, “Speckle in Optical Coherence Tomography,” in Advanced Biophotonics, (Series in Optics and Optoelectronics: Taylor & Francis, 2013, pp. 211-277.
[100] A. Curatolo, L. Chin, C. Stynes, B. F. Kennedy, and D. D. Sampson, “Simulation of image formation process in phase-sensitive optical coherence elastography,” in OPTO 14, Torun, Poland, 2013.
[101] B. C. Q. Robert A McLaughlin, Dirk Lorenser, Xiaojie Yang, Boon Y Yeo, Andrea Curatolo, Kelsey M Kennedy, Loretta Scolaro, Rodney W Kirk, David D Sampson. (2012, December 2012) A Microscope in a Needle. Optics and Photonics News. 1. Available: https://www.osa-opn.org/opn/media/Images/PDF/2012/1212/40-42-OptCoherTomog-blues-2.pdf?ext=.pdf
[102] R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of Breast Cancer With Optical Coherence Tomography Needle Probes: Feasibility and Initial Results,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 18, no. 3, pp. 1184-1191, 2012.
[103] R. A. McLaughlin, A. Curatolo, B. Y. Yeo, K. M. Kennedy, B. C. Quirk, R. W. Kirk, D. Lorenser, B. A. Wood, A. G. Bourke, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer tumor margins with an OCT needle probe,” in SPIE Photonics West, San Francisco, USA, 2012.
[104] G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express, vol. 3, no. 6, pp. 1381-1398, 2012.
[105] B. C. Kennedy, Andrea; Kennedy, Kelsey; Mclaughlin, Robert; Tien, A.; Latham, B.; Saunders, Christobel; Sampson, David D., “Microscopic Imaging of the Mechanical Properties of Breast Tumour Margins using Optical Coherence Elastography,” in Australian Conference on Optical Fibre Technology, Australia, 2012, vol. 1: IEEE, Institute of Electrical and Electronics Engineers, pp. 1-3.
[106] A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, P. D. Robbins, C. M. Saunders, and D. D. Sampson, “Ultrasound-Guided Optical Coherence Tomography Needle Probe for the Assessment of Breast Cancer Tumor Margins,” American Journal of Roentgenology, vol. 199, no. 4, pp. W520-W522, 2012/10/01 2012.
[107] A. Curatolo, B. F. Kennedy, K. M. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Portable 3D optical coherence elastography for applying microscopic imaging of tissue mechanical properties in the clinic,” in Optics Within the Life Science, Genoa, Italy, 2012.
[108] A. Curatolo, B. Kennedy, and D. Sampson, “Maximizing OCT image quality at depth using a 3D-structured phantom to optimize imaging parameters,” in SPIE Photonics West, San Francisco, USA, 2012.
[109] J. P. Williamson, R. A. McLaughlin, W. J. Noffsinger, A. L. James, V. A. Baker, A. Curatolo, J. J. Armstrong, A. Regli, K. L. Shepherd, G. B. Marks, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Elastic Properties of the Central Airways in Obstructive Lung Diseases Measured Using Anatomical Optical Coherence Tomography,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 5, pp. 612-619, 2011.
[110] D. D. Sampson, B. C. Quirk, A. Curatolo, L. Scolaro, R. W. Kirk, D. Lorenser, R. S. Pillai, and R. A. McLaughlin, “Microscope-in-a-needle technology for deep-tissue 3D imaging,” in 2011 ICO International Conference on Information Photonics, 18-20 May 2011 2011, pp. 1-2, doi: 10.1109/ICO-IP.2011.5953752.
[111] B. F. K. A. C. T. R. H. F. B. D. D. Sampson, “Use of creep compounding to reduce speckle in optical coherence tomography images,” in SPIE Photonics West, San Francisco, USA, 2011.
[112] B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, D. D. Sampson, and P. B. Noble, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” Journal of Biomedical Optics, vol. 16, no. 3, p. 5, 2011.
[113] R. W. Kirk, R. A. McLaughlin, B. C. Quirk, A. Curatolo, and D. D. Sampson, “3D visualization of tissue microstructures using optical coherence tomography needle probes,” in 21st International Conference on Optical Fibre Sensors (OFS21), 2011, vol. 7753: SPIE, p. 4.
[114] B. F. Kennedy, A. Curatolo, T. R. Hillman, C. Saunders, and D. D. Sampson, “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” Journal of Biomedical Optics, vol. 16, no. 2, p. 3, 2011.
[115] A. Curatolo, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrasound guided 3D-OCT imaging in deep tissue with a rotating needle probe,” in SPIE Photonics West, San Francisco, USA, 2011.
[116] A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Optics Express, vol. 19, no. 20, pp. 19480-19485, 2011/09/26 2011.
[117] A. Curatolo, B. Kennedy, and D. Sampson, “Mesoscopic 3D optical phantom technology and its application in optical coherence tomography,” in European Conference on Biomedical Optics (ECBO), Munich, Germany, 2011.
[118] J. P. Williamson, R. A. McLaughlin, M. J. Phillips, A. Curatolo, J. J. Armstrong, K. J. Maddison, R. E. Sheehan, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Feasibility of Applying Real-time Optical Imaging During Bronchoscopic Interventions for Central Airway Obstruction,” Journal of Bronchology & Interventional Pulmonology, vol. 17, no. 4, pp. 307-316, 2010.
[119] J. P. Williamson, J. J. Armstrong, R. A. McLaughlin, P. B. Noble, A. R. West, S. Becker, A. Curatolo, W. J. Noffsinger, H. W. Mitchell, M. J. Phillips, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Measuring airway dimensions during bronchoscopy using anatomical optical coherence tomography,” European Respiratory Journal, vol. 35, no. 1, pp. 34-41, 2010.
[120] J. P. W. V. A. Baker, R. A. Mclaughlin, A. Curatolo, D. D. Sampson, D. R. Hillman, P. R. Eastwood, “Cardiogenic Influences On Airway Dimensions In Obstructive Lung Disease: tp044,” in Respirology, 2010, vol. 15, no. s1, p. A51, doi: doi:10.1111/j.1440-1843.2010.01736.x. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1440-1843.2010.01736.x
[121] Y. M. Liew, R. A. McLaughlin, A. Curatolo, and D. D. Sampson, “Assessment and correction of imaging artifacts in skin imaging using fibre-based optical coherence tomography,” in 35th Australian Conference on Optical Fibre Technology, 5-9 Dec. 2010 2010, pp. 1-4, doi: 10.1109/ACOFT.2010.5929920.
[122] B. Lau, R. A. McLaughlin, A. Curatolo, R. W. Kirk, D. K. Gerstmann, and D. D. Sampson, “Imaging true 3D endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways,” Optics Express, vol. 18, no. 26, pp. 27173-27180, 2010/12/20 2010.
[123] B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Optics Letters, vol. 35, no. 14, pp. 2445-2447, 2010/07/15 2010.
[124] T. R. Hillman, A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans,” Optics Letters, vol. 35, no. 12, pp. 1998-2000, 2010/06/15 2010.
[125] A. Curatolo, T. R. Hillman, B. F. Kennedy, and D. D. Sampson, “Multiple scattering detection in optical coherence tomography using speckle statistics,” in 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM), 11-13 Jan. 2010 2010, pp. 61-62, doi: 10.1109/PHOTWTM.2010.5421964.
[126] R. A. McLaughlin, J. P. Williamson, A. Curatolo, V. A. Baker, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “In vivo 4D imaging of the human lower airway using anatomical optical coherence tomography,” in 20th International Conference on Optical Fibre Sensors, 2009, vol. 7503: SPIE, p. 4, doi: https://doi.org/10.1117/12.835797.
Research groups
Image-guided Devices for Ophthalmic Care
We seek to research novel techniques and develop instrumentation to address unanswered questions in vision science and unmet needs in ophthalmology and optometry.